mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-17 15:58:25 +00:00
Store connector (#89)
1.knowledge_init.py config update 2.DB_GPT_wechat2
This commit is contained in:
commit
2eca123bda
Binary file not shown.
Before Width: | Height: | Size: 257 KiB After Width: | Height: | Size: 157 KiB |
@ -38,14 +38,6 @@ class Config(metaclass=Singleton):
|
|||||||
self.use_mac_os_tts = False
|
self.use_mac_os_tts = False
|
||||||
self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS")
|
self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS")
|
||||||
|
|
||||||
# milvus or zilliz cloud configuration
|
|
||||||
self.milvus_addr = os.getenv("MILVUS_ADDR", "localhost:19530")
|
|
||||||
self.milvus_username = os.getenv("MILVUS_USERNAME")
|
|
||||||
self.milvus_password = os.getenv("MILVUS_PASSWORD")
|
|
||||||
self.milvus_collection = os.getenv("MILVUS_COLLECTION", "dbgpt")
|
|
||||||
self.milvus_secure = os.getenv("MILVUS_SECURE") == "True"
|
|
||||||
|
|
||||||
|
|
||||||
self.authorise_key = os.getenv("AUTHORISE_COMMAND_KEY", "y")
|
self.authorise_key = os.getenv("AUTHORISE_COMMAND_KEY", "y")
|
||||||
self.exit_key = os.getenv("EXIT_KEY", "n")
|
self.exit_key = os.getenv("EXIT_KEY", "n")
|
||||||
self.image_provider = os.getenv("IMAGE_PROVIDER", True)
|
self.image_provider = os.getenv("IMAGE_PROVIDER", True)
|
||||||
|
@ -139,29 +139,21 @@ class MilvusStore(VectorStoreBase):
|
|||||||
fields.append(
|
fields.append(
|
||||||
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1)
|
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1)
|
||||||
)
|
)
|
||||||
# create the primary key field
|
# primary key field
|
||||||
fields.append(
|
fields.append(
|
||||||
FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True)
|
FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True)
|
||||||
)
|
)
|
||||||
# create the vector field
|
# vector field
|
||||||
fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim))
|
fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim))
|
||||||
# Create the schema for the collection
|
# milvus the schema for the collection
|
||||||
schema = CollectionSchema(fields)
|
schema = CollectionSchema(fields)
|
||||||
# Create the collection
|
# Create the collection
|
||||||
collection = Collection(collection_name, schema)
|
collection = Collection(collection_name, schema)
|
||||||
self.col = collection
|
self.col = collection
|
||||||
# Index parameters for the collection
|
# index parameters for the collection
|
||||||
index = self.index_params
|
index = self.index_params
|
||||||
# Create the index
|
# milvus index
|
||||||
collection.create_index(vector_field, index)
|
collection.create_index(vector_field, index)
|
||||||
# Create the VectorStore
|
|
||||||
# milvus = cls(
|
|
||||||
# embedding,
|
|
||||||
# kwargs.get("connection_args", {"port": 19530}),
|
|
||||||
# collection_name,
|
|
||||||
# text_field,
|
|
||||||
# )
|
|
||||||
# Add the texts.
|
|
||||||
schema = collection.schema
|
schema = collection.schema
|
||||||
for x in schema.fields:
|
for x in schema.fields:
|
||||||
self.fields.append(x.name)
|
self.fields.append(x.name)
|
||||||
|
@ -69,6 +69,7 @@ colorama
|
|||||||
playsound
|
playsound
|
||||||
distro
|
distro
|
||||||
pypdf
|
pypdf
|
||||||
|
milvus-cli==0.3.2
|
||||||
|
|
||||||
# Testing dependencies
|
# Testing dependencies
|
||||||
pytest
|
pytest
|
||||||
|
@ -1,12 +1,17 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
import argparse
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
from pilot.configs.model_config import DATASETS_DIR, LLM_MODEL_CONFIG, VECTOR_SEARCH_TOP_K, VECTOR_STORE_CONFIG, \
|
|
||||||
VECTOR_STORE_TYPE
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
|
||||||
|
|
||||||
|
from pilot.configs.config import Config
|
||||||
|
from pilot.configs.model_config import DATASETS_DIR, LLM_MODEL_CONFIG, VECTOR_SEARCH_TOP_K
|
||||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||||
|
|
||||||
|
CFG = Config()
|
||||||
class LocalKnowledgeInit:
|
class LocalKnowledgeInit:
|
||||||
embeddings: object = None
|
embeddings: object = None
|
||||||
model_name = LLM_MODEL_CONFIG["text2vec"]
|
model_name = LLM_MODEL_CONFIG["text2vec"]
|
||||||
@ -32,6 +37,7 @@ class LocalKnowledgeInit:
|
|||||||
dc, s = doc
|
dc, s = doc
|
||||||
yield s, dc
|
yield s, dc
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--vector_name", type=str, default="default")
|
parser.add_argument("--vector_name", type=str, default="default")
|
||||||
@ -40,8 +46,8 @@ if __name__ == "__main__":
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
vector_name = args.vector_name
|
vector_name = args.vector_name
|
||||||
append_mode = args.append
|
append_mode = args.append
|
||||||
store_type = VECTOR_STORE_TYPE
|
store_type = CFG.VECTOR_STORE_TYPE
|
||||||
vector_store_config = {"url": VECTOR_STORE_CONFIG["url"], "port": VECTOR_STORE_CONFIG["port"], "vector_store_name":vector_name}
|
vector_store_config = {"vector_store_name": vector_name}
|
||||||
print(vector_store_config)
|
print(vector_store_config)
|
||||||
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
|
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
|
||||||
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
||||||
|
Loading…
Reference in New Issue
Block a user