mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-05 19:11:52 +00:00
feat:add rag awel operator view metadata. (#1174)
This commit is contained in:
242
dbgpt/serve/rag/operators/knowledge_space.py
Normal file
242
dbgpt/serve/rag/operators/knowledge_space.py
Normal file
@@ -0,0 +1,242 @@
|
||||
from functools import reduce
|
||||
from typing import List, Optional
|
||||
|
||||
from dbgpt.app.knowledge.api import knowledge_space_service
|
||||
from dbgpt.app.knowledge.request.request import KnowledgeSpaceRequest
|
||||
from dbgpt.app.knowledge.service import CFG, KnowledgeService
|
||||
from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG
|
||||
from dbgpt.core import (
|
||||
BaseMessage,
|
||||
ChatPromptTemplate,
|
||||
HumanPromptTemplate,
|
||||
ModelMessage,
|
||||
)
|
||||
from dbgpt.core.awel import JoinOperator, MapOperator
|
||||
from dbgpt.core.awel.flow import (
|
||||
IOField,
|
||||
OperatorCategory,
|
||||
OperatorType,
|
||||
OptionValue,
|
||||
Parameter,
|
||||
ViewMetadata,
|
||||
)
|
||||
from dbgpt.core.awel.task.base import IN, OUT
|
||||
from dbgpt.core.interface.operators.prompt_operator import BasePromptBuilderOperator
|
||||
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
|
||||
from dbgpt.rag.retriever.embedding import EmbeddingRetriever
|
||||
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
||||
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
||||
from dbgpt.util.function_utils import rearrange_args_by_type
|
||||
|
||||
|
||||
class SpaceRetrieverOperator(MapOperator[IN, OUT]):
|
||||
"""knowledge space retriever operator."""
|
||||
|
||||
metadata = ViewMetadata(
|
||||
label="Knowledge Space Operator",
|
||||
name="space_operator",
|
||||
category=OperatorCategory.RAG,
|
||||
description="knowledge space retriever operator.",
|
||||
inputs=[IOField.build_from("query", "query", str, "user query")],
|
||||
outputs=[
|
||||
IOField.build_from(
|
||||
"related chunk content",
|
||||
"related chunk content",
|
||||
List,
|
||||
description="related chunk content",
|
||||
)
|
||||
],
|
||||
parameters=[
|
||||
Parameter.build_from(
|
||||
"Space Name",
|
||||
"space_name",
|
||||
str,
|
||||
options=[
|
||||
OptionValue(label=space.name, name=space.name, value=space.name)
|
||||
for space in knowledge_space_service.get_knowledge_space(
|
||||
KnowledgeSpaceRequest()
|
||||
)
|
||||
],
|
||||
optional=False,
|
||||
default=None,
|
||||
description="space name.",
|
||||
)
|
||||
],
|
||||
documentation_url="https://github.com/openai/openai-python",
|
||||
)
|
||||
|
||||
def __init__(self, space_name: str, recall_score: Optional[float] = 0.3, **kwargs):
|
||||
"""
|
||||
Args:
|
||||
space_name (str): The space name.
|
||||
recall_score (Optional[float], optional): The recall score. Defaults to 0.3.
|
||||
"""
|
||||
self._space_name = space_name
|
||||
self._recall_score = recall_score
|
||||
self._service = KnowledgeService()
|
||||
embedding_factory = CFG.SYSTEM_APP.get_component(
|
||||
"embedding_factory", EmbeddingFactory
|
||||
)
|
||||
embedding_fn = embedding_factory.create(
|
||||
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
|
||||
)
|
||||
config = VectorStoreConfig(name=self._space_name, embedding_fn=embedding_fn)
|
||||
self._vector_store_connector = VectorStoreConnector(
|
||||
vector_store_type=CFG.VECTOR_STORE_TYPE,
|
||||
vector_store_config=config,
|
||||
)
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def map(self, query: IN) -> OUT:
|
||||
"""Map input value to output value.
|
||||
|
||||
Args:
|
||||
input_value (IN): The input value.
|
||||
|
||||
Returns:
|
||||
OUT: The output value.
|
||||
"""
|
||||
space_context = self._service.get_space_context(self._space_name)
|
||||
top_k = (
|
||||
CFG.KNOWLEDGE_SEARCH_TOP_SIZE
|
||||
if space_context is None
|
||||
else int(space_context["embedding"]["topk"])
|
||||
)
|
||||
recall_score = (
|
||||
CFG.KNOWLEDGE_SEARCH_RECALL_SCORE
|
||||
if space_context is None
|
||||
else float(space_context["embedding"]["recall_score"])
|
||||
)
|
||||
embedding_retriever = EmbeddingRetriever(
|
||||
top_k=top_k,
|
||||
vector_store_connector=self._vector_store_connector,
|
||||
)
|
||||
if isinstance(query, str):
|
||||
candidates = await embedding_retriever.aretrieve_with_scores(
|
||||
query, recall_score
|
||||
)
|
||||
elif isinstance(query, list):
|
||||
candidates = [
|
||||
await embedding_retriever.aretrieve_with_scores(q, recall_score)
|
||||
for q in query
|
||||
]
|
||||
candidates = reduce(lambda x, y: x + y, candidates)
|
||||
return [candidate.content for candidate in candidates]
|
||||
|
||||
|
||||
class KnowledgeSpacePromptBuilderOperator(
|
||||
BasePromptBuilderOperator, JoinOperator[List[ModelMessage]]
|
||||
):
|
||||
"""The operator to build the prompt with static prompt.
|
||||
|
||||
The prompt will pass to this operator.
|
||||
"""
|
||||
|
||||
metadata = ViewMetadata(
|
||||
label="Knowledge Space Prompt Builder Operator",
|
||||
name="knowledge_space_prompt_builder_operator",
|
||||
description="Build messages from prompt template and chat history.",
|
||||
operator_type=OperatorType.JOIN,
|
||||
category=OperatorCategory.CONVERSION,
|
||||
parameters=[
|
||||
Parameter.build_from(
|
||||
"Chat Prompt Template",
|
||||
"prompt",
|
||||
ChatPromptTemplate,
|
||||
description="The chat prompt template.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
"History Key",
|
||||
"history_key",
|
||||
str,
|
||||
optional=True,
|
||||
default="chat_history",
|
||||
description="The key of history in prompt dict.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
"String History",
|
||||
"str_history",
|
||||
bool,
|
||||
optional=True,
|
||||
default=False,
|
||||
description="Whether to convert the history to string.",
|
||||
),
|
||||
],
|
||||
inputs=[
|
||||
IOField.build_from(
|
||||
"user input",
|
||||
"user_input",
|
||||
str,
|
||||
is_list=False,
|
||||
description="user input",
|
||||
),
|
||||
IOField.build_from(
|
||||
"space related context",
|
||||
"related_context",
|
||||
List,
|
||||
is_list=False,
|
||||
description="context of knowledge space.",
|
||||
),
|
||||
IOField.build_from(
|
||||
"History",
|
||||
"history",
|
||||
BaseMessage,
|
||||
is_list=True,
|
||||
description="The history.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IOField.build_from(
|
||||
"Formatted Messages",
|
||||
"formatted_messages",
|
||||
ModelMessage,
|
||||
is_list=True,
|
||||
description="The formatted messages.",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
prompt: ChatPromptTemplate,
|
||||
history_key: str = "chat_history",
|
||||
check_storage: bool = True,
|
||||
str_history: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""Create a new history dynamic prompt builder operator.
|
||||
Args:
|
||||
|
||||
prompt (ChatPromptTemplate): The chat prompt template.
|
||||
history_key (str, optional): The key of history in prompt dict. Defaults to "chat_history".
|
||||
check_storage (bool, optional): Whether to check the storage. Defaults to True.
|
||||
str_history (bool, optional): Whether to convert the history to string. Defaults to False.
|
||||
"""
|
||||
|
||||
self._prompt = prompt
|
||||
self._history_key = history_key
|
||||
self._str_history = str_history
|
||||
BasePromptBuilderOperator.__init__(self, check_storage=check_storage)
|
||||
JoinOperator.__init__(self, combine_function=self.merge_context, **kwargs)
|
||||
|
||||
@rearrange_args_by_type
|
||||
async def merge_context(
|
||||
self,
|
||||
user_input: str,
|
||||
related_context: List[str],
|
||||
history: Optional[List[BaseMessage]],
|
||||
) -> List[ModelMessage]:
|
||||
"""Merge the prompt and history."""
|
||||
prompt_dict = dict()
|
||||
prompt_dict["context"] = related_context
|
||||
for prompt in self._prompt.messages:
|
||||
if isinstance(prompt, HumanPromptTemplate):
|
||||
prompt_dict[prompt.input_variables[0]] = user_input
|
||||
|
||||
if history:
|
||||
if self._str_history:
|
||||
prompt_dict[self._history_key] = BaseMessage.messages_to_string(history)
|
||||
else:
|
||||
prompt_dict[self._history_key] = history
|
||||
return await self.format_prompt(self._prompt, prompt_dict)
|
Reference in New Issue
Block a user