mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-12 13:42:23 +00:00
refactor: merge dbgpt_test
1.merge dbgpt_test 2.restore weaviate_store.py
This commit is contained in:
parent
b36718494e
commit
339723f080
146
pilot/vector_store/weaviate_store.py
Normal file
146
pilot/vector_store/weaviate_store.py
Normal file
@ -0,0 +1,146 @@
|
||||
import os
|
||||
import json
|
||||
import weaviate
|
||||
from langchain.schema import Document
|
||||
from langchain.vectorstores import Weaviate
|
||||
from weaviate.exceptions import WeaviateBaseError
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import KNOWLEDGE_UPLOAD_ROOT_PATH
|
||||
from pilot.logs import logger
|
||||
from pilot.vector_store.vector_store_base import VectorStoreBase
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class WeaviateStore(VectorStoreBase):
|
||||
"""Weaviate database"""
|
||||
|
||||
def __init__(self, ctx: dict) -> None:
|
||||
"""Initialize with Weaviate client."""
|
||||
try:
|
||||
import weaviate
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import weaviate python package. "
|
||||
"Please install it with `pip install weaviate-client`."
|
||||
)
|
||||
|
||||
self.ctx = ctx
|
||||
self.weaviate_url = CFG.WEAVIATE_URL
|
||||
self.embedding = ctx.get("embeddings", None)
|
||||
self.vector_name = ctx["vector_store_name"]
|
||||
self.persist_dir = os.path.join(
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH, self.vector_name + ".vectordb"
|
||||
)
|
||||
|
||||
self.vector_store_client = weaviate.Client(self.weaviate_url)
|
||||
|
||||
def similar_search(self, text: str, topk: int) -> None:
|
||||
"""Perform similar search in Weaviate"""
|
||||
logger.info("Weaviate similar search")
|
||||
# nearText = {
|
||||
# "concepts": [text],
|
||||
# "distance": 0.75, # prior to v1.14 use "certainty" instead of "distance"
|
||||
# }
|
||||
# vector = self.embedding.embed_query(text)
|
||||
response = (
|
||||
self.vector_store_client.query.get(
|
||||
self.vector_name, ["metadata", "page_content"]
|
||||
)
|
||||
# .with_near_vector({"vector": vector})
|
||||
.with_limit(topk).do()
|
||||
)
|
||||
res = response["data"]["Get"][list(response["data"]["Get"].keys())[0]]
|
||||
docs = []
|
||||
for r in res:
|
||||
docs.append(
|
||||
Document(
|
||||
page_content=r["page_content"],
|
||||
metadata={"metadata": r["metadata"]},
|
||||
)
|
||||
)
|
||||
return docs
|
||||
|
||||
def vector_name_exists(self) -> bool:
|
||||
"""Check if a vector name exists for a given class in Weaviate.
|
||||
Returns:
|
||||
bool: True if the vector name exists, False otherwise.
|
||||
"""
|
||||
try:
|
||||
if self.vector_store_client.schema.get(self.vector_name):
|
||||
return True
|
||||
return False
|
||||
except WeaviateBaseError as e:
|
||||
logger.error("vector_name_exists error", e.message)
|
||||
return False
|
||||
|
||||
def _default_schema(self) -> None:
|
||||
"""
|
||||
Create the schema for Weaviate with a Document class containing metadata and text properties.
|
||||
"""
|
||||
|
||||
schema = {
|
||||
"classes": [
|
||||
{
|
||||
"class": self.vector_name,
|
||||
"description": "A document with metadata and text",
|
||||
# "moduleConfig": {
|
||||
# "text2vec-transformers": {
|
||||
# "poolingStrategy": "masked_mean",
|
||||
# "vectorizeClassName": False,
|
||||
# }
|
||||
# },
|
||||
"properties": [
|
||||
{
|
||||
"dataType": ["text"],
|
||||
# "moduleConfig": {
|
||||
# "text2vec-transformers": {
|
||||
# "skip": False,
|
||||
# "vectorizePropertyName": False,
|
||||
# }
|
||||
# },
|
||||
"description": "Metadata of the document",
|
||||
"name": "metadata",
|
||||
},
|
||||
{
|
||||
"dataType": ["text"],
|
||||
# "moduleConfig": {
|
||||
# "text2vec-transformers": {
|
||||
# "skip": False,
|
||||
# "vectorizePropertyName": False,
|
||||
# }
|
||||
# },
|
||||
"description": "Text content of the document",
|
||||
"name": "page_content",
|
||||
},
|
||||
],
|
||||
# "vectorizer": "text2vec-transformers",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
# Create the schema in Weaviate
|
||||
self.vector_store_client.schema.create(schema)
|
||||
|
||||
def load_document(self, documents: list) -> None:
|
||||
"""Load documents into Weaviate"""
|
||||
logger.info("Weaviate load document")
|
||||
texts = [doc.page_content for doc in documents]
|
||||
metadatas = [doc.metadata for doc in documents]
|
||||
|
||||
# Import data
|
||||
with self.vector_store_client.batch as batch:
|
||||
batch.batch_size = 100
|
||||
|
||||
# Batch import all documents
|
||||
for i in range(len(texts)):
|
||||
properties = {
|
||||
"metadata": metadatas[i]["source"],
|
||||
"page_content": texts[i],
|
||||
}
|
||||
|
||||
self.vector_store_client.batch.add_data_object(
|
||||
data_object=properties, class_name=self.vector_name
|
||||
)
|
||||
self.vector_store_client.batch.flush()
|
Loading…
Reference in New Issue
Block a user