This commit is contained in:
csunny 2023-06-01 15:03:02 +08:00
parent cd305f5e32
commit 39e760da88

View File

@ -1,73 +1,68 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch import torch
import transformers from threading import Thread
from transformers import GenerationConfig from transformers import TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria
from pilot.model.llm_utils import Iteratorize, Stream from pilot.conversation import ROLE_ASSISTANT, ROLE_USER
def guanaco_generate_output(model, tokenizer, params, device, context_len=2048):
def guanaco_generate_output(model, tokenizer, params, device, context_len=2048, stream_interval=2):
"""Fork from fastchat: https://github.com/KohakuBlueleaf/guanaco-lora/blob/main/generate.py""" """Fork from fastchat: https://github.com/KohakuBlueleaf/guanaco-lora/blob/main/generate.py"""
prompt = params["prompt"] stop = params.get("stop", "###")
inputs = tokenizer(prompt, return_tensors="pt") messages = params["prompt"].split(stop)
input_ids = inputs["input_ids"].to(device)
temperature = (0.5,)
top_p = (0.95,)
top_k = (45,)
max_new_tokens = (128,)
stream_output = True
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
generate_params = { hist = []
"input_ids": input_ids, for i in range(1, len(messages) - 2, 2):
"generation_config": generation_config, hist.append(
"return_dict_in_generate": True, (
"output_scores": True, messages[i].split(ROLE_USER + ":")[1],
"max_new_tokens": max_new_tokens, messages[i + 1].split(ROLE_ASSISTANT + ":")[1],
} )
# if stream_output:
# # Stream the reply 1 token at a time.
# # This is based on the trick of using 'stopping_criteria' to create an iterator,
# # from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
# def generate_with_callback(callback=None, **kwargs):
# kwargs.setdefault("stopping_criteria", transformers.StoppingCriteriaList())
# kwargs["stopping_criteria"].append(Stream(callback_func=callback))
# with torch.no_grad():
# model.generate(**kwargs)
# def generate_with_streaming(**kwargs):
# return Iteratorize(generate_with_callback, kwargs, callback=None)
# with generate_with_streaming(**generate_params) as generator:
# for output in generator:
# # new_tokens = len(output) - len(input_ids[0])
# decoded_output = tokenizer.decode(output)
# if output[-1] in [tokenizer.eos_token_id]:
# break
# yield decoded_output.split("### Response:")[-1].strip()
# return # early return for stream_output
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
) )
s = generation_output.sequences[0]
print(f"debug_sequences,{s}", s) text = + "".join(["".join([f"### USER: {item[0]}\n",f"### Assistant: {item[1]}\n",])for item in hist[:-1]])
output = tokenizer.decode(s) text += "".join(["".join([f"### USER: {hist[-1][0]}\n",f"### Assistant: {hist[-1][1]}\n",])])
print(f"debug_output,{output}", output)
yield output.split("### Response:")[-1].strip()
query = messages[-2].split(ROLE_USER + ":")[1]
print("Query Message: ", query)
input_ids = tokenizer(query, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
stop_token_ids = [0]
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
stop = StopOnTokens()
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=512,
temperature=1.0,
do_sample=True,
top_k=1,
streamer=streamer,
repetition_penalty=1.7,
stopping_criteria=StoppingCriteriaList([stop])
)
t1 = Thread(target=model.generate, kwargs=generate_kwargs)
t1.start()
generator = model.generate(**generate_kwargs)
for output in generator:
# new_tokens = len(output) - len(input_ids[0])
decoded_output = tokenizer.decode(output)
if output[-1] in [tokenizer.eos_token_id]:
break
out = decoded_output.split("### Response:")[-1].strip()
yield out