mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-14 05:31:40 +00:00
chore: Add pylint for DB-GPT core lib (#1076)
This commit is contained in:
@@ -192,7 +192,8 @@ def _create_mysql_database(db_name: str, db_url: str, try_to_create_db: bool = F
|
||||
with engine_no_db.connect() as conn:
|
||||
conn.execute(
|
||||
DDL(
|
||||
f"CREATE DATABASE {db_name} CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci"
|
||||
f"CREATE DATABASE {db_name} CHARACTER SET utf8mb4 COLLATE "
|
||||
f"utf8mb4_unicode_ci"
|
||||
)
|
||||
)
|
||||
logger.info(f"Database {db_name} successfully created")
|
||||
@@ -218,26 +219,31 @@ class WebServerParameters(BaseParameters):
|
||||
controller_addr: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The Model controller address to connect. If None, read model controller address from environment key `MODEL_SERVER`."
|
||||
"help": "The Model controller address to connect. If None, read model "
|
||||
"controller address from environment key `MODEL_SERVER`."
|
||||
},
|
||||
)
|
||||
model_name: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The default model name to use. If None, read model name from environment key `LLM_MODEL`.",
|
||||
"help": "The default model name to use. If None, read model name from "
|
||||
"environment key `LLM_MODEL`.",
|
||||
"tags": "fixed",
|
||||
},
|
||||
)
|
||||
share: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether to create a publicly shareable link for the interface. Creates an SSH tunnel to make your UI accessible from anywhere. "
|
||||
"help": "Whether to create a publicly shareable link for the interface. "
|
||||
"Creates an SSH tunnel to make your UI accessible from anywhere. "
|
||||
},
|
||||
)
|
||||
remote_embedding: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether to enable remote embedding models. If it is True, you need to start a embedding model through `dbgpt start worker --worker_type text2vec --model_name xxx --model_path xxx`"
|
||||
"help": "Whether to enable remote embedding models. If it is True, you need"
|
||||
" to start a embedding model through `dbgpt start worker --worker_type "
|
||||
"text2vec --model_name xxx --model_path xxx`"
|
||||
},
|
||||
)
|
||||
log_level: Optional[str] = field(
|
||||
@@ -286,3 +292,10 @@ class WebServerParameters(BaseParameters):
|
||||
"help": "The directories to search awel files, split by `,`",
|
||||
},
|
||||
)
|
||||
default_thread_pool_size: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The default thread pool size, If None, "
|
||||
"use default config of python thread pool",
|
||||
},
|
||||
)
|
||||
|
@@ -25,7 +25,9 @@ def initialize_components(
|
||||
from dbgpt.model.cluster.controller.controller import controller
|
||||
|
||||
# Register global default executor factory first
|
||||
system_app.register(DefaultExecutorFactory)
|
||||
system_app.register(
|
||||
DefaultExecutorFactory, max_workers=param.default_thread_pool_size
|
||||
)
|
||||
system_app.register_instance(controller)
|
||||
|
||||
from dbgpt.serve.agent.hub.controller import module_agent
|
||||
|
@@ -3,8 +3,6 @@ import os
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(ROOT_PATH)
|
||||
from fastapi import FastAPI
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
@@ -41,6 +39,10 @@ from dbgpt.util.utils import (
|
||||
setup_logging,
|
||||
)
|
||||
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(ROOT_PATH)
|
||||
|
||||
|
||||
static_file_path = os.path.join(ROOT_PATH, "dbgpt", "app/static")
|
||||
|
||||
CFG = Config()
|
||||
|
@@ -5,6 +5,7 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import requests
|
||||
from prettytable import PrettyTable
|
||||
|
||||
from dbgpt.app.knowledge.request.request import (
|
||||
ChunkQueryRequest,
|
||||
@@ -193,9 +194,6 @@ def knowledge_init(
|
||||
return
|
||||
|
||||
|
||||
from prettytable import PrettyTable
|
||||
|
||||
|
||||
class _KnowledgeVisualizer:
|
||||
def __init__(self, api_address: str, out_format: str):
|
||||
self.client = KnowledgeApiClient(api_address)
|
||||
|
@@ -4,13 +4,14 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(ROOT_PATH)
|
||||
|
||||
from dbgpt._private.config import Config
|
||||
from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG, LLM_MODEL_CONFIG
|
||||
from dbgpt.model.cluster import run_worker_manager
|
||||
|
||||
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(ROOT_PATH)
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
model_path = LLM_MODEL_CONFIG.get(CFG.LLM_MODEL)
|
||||
|
@@ -313,8 +313,9 @@ class BaseChat(ABC):
|
||||
)
|
||||
### store current conversation
|
||||
span.end(metadata={"error": str(e)})
|
||||
# self.memory.append(self.current_message)
|
||||
self.current_message.end_current_round()
|
||||
await blocking_func_to_async(
|
||||
self._executor, self.current_message.end_current_round
|
||||
)
|
||||
|
||||
async def nostream_call(self):
|
||||
payload = await self._build_model_request()
|
||||
@@ -381,8 +382,9 @@ class BaseChat(ABC):
|
||||
)
|
||||
span.end(metadata={"error": str(e)})
|
||||
### store dialogue
|
||||
# self.memory.append(self.current_message)
|
||||
self.current_message.end_current_round()
|
||||
await blocking_func_to_async(
|
||||
self._executor, self.current_message.end_current_round
|
||||
)
|
||||
return self.current_ai_response()
|
||||
|
||||
async def get_llm_response(self):
|
||||
|
Reference in New Issue
Block a user