mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-07-31 07:34:07 +00:00
Add: multi model support
This commit is contained in:
parent
a68e164a5f
commit
4302ae9087
96
pilot/model/adapter.py
Normal file
96
pilot/model/adapter.py
Normal file
@ -0,0 +1,96 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import List
|
||||
from functools import cache
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
AutoModel
|
||||
)
|
||||
|
||||
class BaseLLMAdaper:
|
||||
"""The Base class for multi model, in our project.
|
||||
We will support those model, which performance resemble ChatGPT """
|
||||
|
||||
def match(self, model_path: str):
|
||||
return True
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, low_cpu_mem_usage=True, **from_pretrained_kwargs
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
llm_model_adapters = List[BaseLLMAdaper] = []
|
||||
|
||||
# Register llm models to adapters, by this we can use multi models.
|
||||
def register_llm_model_adapters(cls):
|
||||
"""Register a llm model adapter."""
|
||||
llm_model_adapters.append(cls())
|
||||
|
||||
|
||||
@cache
|
||||
def get_llm_model_adapter(model_path: str) -> BaseLLMAdaper:
|
||||
for adapter in llm_model_adapters:
|
||||
if adapter.match(model_path):
|
||||
return adapter
|
||||
|
||||
raise ValueError(f"Invalid model adapter for {model_path}")
|
||||
|
||||
|
||||
# TODO support cpu? for practise we support gpt4all or chatglm-6b-int4?
|
||||
|
||||
class VicunaLLMAdapater(BaseLLMAdaper):
|
||||
"""Vicuna Adapter """
|
||||
def match(self, model_path: str):
|
||||
return "vicuna" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwagrs: dict):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path,
|
||||
low_cpu_mem_usage=True,
|
||||
**from_pretrained_kwagrs
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
class ChatGLMAdapater(BaseLLMAdaper):
|
||||
"""LLM Adatpter for THUDM/chatglm-6b"""
|
||||
def match(self, model_path: str):
|
||||
return "chatglm" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(
|
||||
model_path, trust_remote_code=True, **from_pretrained_kwargs
|
||||
).half().cuda()
|
||||
return model, tokenizer
|
||||
|
||||
class KoalaLLMAdapter(BaseLLMAdaper):
|
||||
"""Koala LLM Adapter which Based LLaMA """
|
||||
def match(self, model_path: str):
|
||||
return "koala" in model_path
|
||||
|
||||
|
||||
class RWKV4LLMAdapter(BaseLLMAdaper):
|
||||
"""LLM Adapter for RwKv4 """
|
||||
def match(self, model_path: str):
|
||||
return "RWKV-4" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
# TODO
|
||||
pass
|
||||
|
||||
class GPT4AllAdapter(BaseLLMAdaper):
|
||||
"""A light version for someone who want practise LLM use laptop."""
|
||||
def match(self, model_path: str):
|
||||
return "gpt4all" in model_path
|
||||
|
||||
|
||||
register_llm_model_adapters(VicunaLLMAdapater)
|
||||
# TODO Default support vicuna, other model need to tests and Evaluate
|
||||
|
||||
register_llm_model_adapters(BaseLLMAdaper)
|
@ -2,21 +2,19 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import warnings
|
||||
from pilot.singleton import Singleton
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
AutoModel
|
||||
)
|
||||
|
||||
from pilot.model.compression import compress_module
|
||||
from pilot.model.adapter import get_llm_model_adapter
|
||||
|
||||
|
||||
class ModelLoader(metaclass=Singleton):
|
||||
"""Model loader is a class for model load
|
||||
|
||||
Args: model_path
|
||||
|
||||
|
||||
TODO: multi model support.
|
||||
"""
|
||||
|
||||
kwargs = {}
|
||||
@ -31,9 +29,11 @@ class ModelLoader(metaclass=Singleton):
|
||||
"device_map": "auto",
|
||||
}
|
||||
|
||||
# TODO multi gpu support
|
||||
def loader(self, num_gpus, load_8bit=False, debug=False):
|
||||
if self.device == "cpu":
|
||||
kwargs = {}
|
||||
|
||||
elif self.device == "cuda":
|
||||
kwargs = {"torch_dtype": torch.float16}
|
||||
if num_gpus == "auto":
|
||||
@ -46,18 +46,20 @@ class ModelLoader(metaclass=Singleton):
|
||||
"max_memory": {i: "13GiB" for i in range(num_gpus)},
|
||||
})
|
||||
else:
|
||||
# Todo Support mps for practise
|
||||
raise ValueError(f"Invalid device: {self.device}")
|
||||
|
||||
if "chatglm" in self.model_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(self.model_path, trust_remote_code=True).half().cuda()
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.model_path, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(self.model_path,
|
||||
low_cpu_mem_usage=True, **kwargs)
|
||||
|
||||
llm_adapter = get_llm_model_adapter(self.model_path)
|
||||
model, tokenizer = llm_adapter.loader(self.model_path, kwargs)
|
||||
|
||||
if load_8bit:
|
||||
compress_module(model, self.device)
|
||||
if num_gpus != 1:
|
||||
warnings.warn(
|
||||
"8-bit quantization is not supported for multi-gpu inference"
|
||||
)
|
||||
else:
|
||||
compress_module(model, self.device)
|
||||
|
||||
if (self.device == "cuda" and num_gpus == 1):
|
||||
model.to(self.device)
|
||||
|
Loading…
Reference in New Issue
Block a user