feat: add schema-linking awel example (#1081)

This commit is contained in:
junewgl
2024-01-21 09:59:59 +08:00
committed by GitHub
parent 2d905191f8
commit 4f833634df
5 changed files with 445 additions and 0 deletions

View File

@@ -0,0 +1,78 @@
from functools import reduce
from typing import List, Optional
from dbgpt.core import LLMClient, ModelMessage, ModelMessageRoleType, ModelRequest
from dbgpt.datasource.rdbms.base import RDBMSDatabase
from dbgpt.rag.chunk import Chunk
from dbgpt.rag.schemalinker.base_linker import BaseSchemaLinker
from dbgpt.rag.summary.rdbms_db_summary import _parse_db_summary
from dbgpt.storage.vector_store.connector import VectorStoreConnector
from dbgpt.util.chat_util import run_async_tasks
INSTRUCTION = (
"You need to filter out the most relevant database table schema information (it may be a single "
"table or multiple tables) required to generate the SQL of the question query from the given "
"database schema information. First, I will show you an example of an instruction followed by "
"the correct schema response. Then, I will give you a new instruction, and you should write "
"the schema response that appropriately completes the request.\n### Example1 Instruction:\n"
"['job(id, name, age)', 'user(id, name, age)', 'student(id, name, age, info)']\n### Example1 "
"Input:\nFind the age of student table\n### Example1 Response:\n['student(id, name, age, info)']"
"\n###New Instruction:\n{}"
)
INPUT_PROMPT = "\n###New Input:\n{}\n###New Response:"
class SchemaLinking(BaseSchemaLinker):
"""SchemaLinking by LLM"""
def __init__(
self,
top_k: int = 5,
connection: Optional[RDBMSDatabase] = None,
llm: Optional[LLMClient] = None,
model_name: Optional[str] = None,
vector_store_connector: Optional[VectorStoreConnector] = None,
**kwargs
):
"""
Args:
connection (Optional[RDBMSDatabase]): RDBMSDatabase connection.
llm (Optional[LLMClient]): base llm
"""
super().__init__(**kwargs)
self._top_k = top_k
self._connection = connection
self._llm = llm
self._model_name = model_name
self._vector_store_connector = vector_store_connector
def _schema_linking(self, query: str) -> List:
"""get all db schema info"""
table_summaries = _parse_db_summary(self._connection)
chunks = [Chunk(content=table_summary) for table_summary in table_summaries]
chunks_content = [chunk.content for chunk in chunks]
return chunks_content
def _schema_linking_with_vector_db(self, query: str) -> List:
queries = [query]
candidates = [
self._vector_store_connector.similar_search(query, self._top_k)
for query in queries
]
candidates = reduce(lambda x, y: x + y, candidates)
return candidates
async def _schema_linking_with_llm(self, query: str) -> List:
chunks_content = self.schema_linking(query)
schema_prompt = INSTRUCTION.format(
str(chunks_content) + INPUT_PROMPT.format(query)
)
messages = [
ModelMessage(role=ModelMessageRoleType.SYSTEM, content=schema_prompt)
]
request = ModelRequest(model=self._model_name, messages=messages)
tasks = [self._llm.generate(request)]
# get accurate schem info by llm
schema = await run_async_tasks(tasks=tasks, concurrency_limit=1)
schema_text = schema[0].text
return schema_text