add plugin mode

This commit is contained in:
yhjun1026 2023-05-30 17:20:37 +08:00
parent dd5fc529e2
commit 5150cfcf55
14 changed files with 212 additions and 153 deletions

View File

View File

@ -1,29 +0,0 @@
from typing import Optional
from pilot.configs.config import Config
from pilot.prompts.generator import PromptGenerator
from pilot.prompts.prompt import build_default_prompt_generator
class CommandsLoad:
"""
Load Plugins Commands Info , help build system prompt!
"""
def __init__(self) -> None:
self.command_registry = None
def getCommandInfos(
self, prompt_generator: Optional[PromptGenerator] = None
) -> str:
cfg = Config()
if prompt_generator is None:
prompt_generator = build_default_prompt_generator()
for plugin in cfg.plugins:
if not plugin.can_handle_post_prompt():
continue
prompt_generator = plugin.post_prompt(prompt_generator)
self.prompt_generator = prompt_generator
command_infos = ""
command_infos += f"\n\n{prompt_generator.commands()}"
return command_infos

View File

@ -263,6 +263,14 @@ conv_qa_prompt_template = """ 基于以下已知的信息, 专业、简要的回
# """
default_conversation = conv_one_shot
chat_mode_title = {
"sql_generate_diagnostics": get_lang_text("sql_analysis_and_diagnosis"),
"chat_use_plugin": get_lang_text("chat_use_plugin"),
"knowledge_qa": get_lang_text("knowledge_qa"),
}
conversation_sql_mode = {
"auto_execute_ai_response": get_lang_text("sql_generate_mode_direct"),
"dont_execute_ai_response": get_lang_text("sql_generate_mode_none"),
@ -274,7 +282,7 @@ conversation_types = {
"knowledge_qa_type_default_knowledge_base_dialogue"
),
"custome": get_lang_text("knowledge_qa_type_add_knowledge_base_dialogue"),
"auto_execute_plugin": get_lang_text("dialogue_use_plugin"),
"url": get_lang_text("knowledge_qa_type_url_knowledge_dialogue"),
}
conv_templates = {

View File

@ -14,17 +14,22 @@ lang_dicts = {
"knowledge_qa_type_llm_native_dialogue": "LLM原生对话",
"knowledge_qa_type_default_knowledge_base_dialogue": "默认知识库对话",
"knowledge_qa_type_add_knowledge_base_dialogue": "新增知识库对话",
"dialogue_use_plugin": "对话使用插件",
"knowledge_qa_type_url_knowledge_dialogue": "URL网页知识对话",
"create_knowledge_base": "新建知识库",
"sql_schema_info": "数据库{}的Schema信息如下: {}\n",
"current_dialogue_mode": "当前对话模式",
"database_smart_assistant": "数据库智能助手",
"sql_vs_setting": "自动执行模式下, DB-GPT可以具备执行SQL、从网络读取知识自动化存储学习的能力",
"knowledge_qa": "知识问答",
"chat_use_plugin": "插件模式",
"dialogue_use_plugin": "对话使用插件",
"select_plugin": "选择插件",
"configure_knowledge_base": "配置知识库",
"new_klg_name": "新知识库名称",
"url_input_label": "输入网页地址",
"add_as_new_klg": "添加为新知识库",
"add_file_to_klg": "向知识库中添加文件",
"upload_file": "上传文件",
"add_file": "添加文件",
"upload_and_load_to_klg": "上传并加载到知识库",
@ -47,14 +52,18 @@ lang_dicts = {
"knowledge_qa_type_llm_native_dialogue": "LLM native dialogue",
"knowledge_qa_type_default_knowledge_base_dialogue": "Default documents",
"knowledge_qa_type_add_knowledge_base_dialogue": "Added documents",
"knowledge_qa_type_url_knowledge_dialogue": "Chat with url",
"dialogue_use_plugin": "Dialogue Extension",
"create_knowledge_base": "Create Knowledge Base",
"sql_schema_info": "the schema information of database {}: {}\n",
"current_dialogue_mode": "Current dialogue mode",
"database_smart_assistant": "Database smart assistant",
"sql_vs_setting": "In the automatic execution mode, DB-GPT can have the ability to execute SQL, read data from the network, automatically store and learn",
"chat_use_plugin": "Plugin Mode",
"select_plugin": "Select Plugin",
"knowledge_qa": "Documents QA",
"configure_knowledge_base": "Configure Documents",
"url_input_label": "Please input url",
"new_klg_name": "New document name",
"add_as_new_klg": "Add as new documents",
"add_file_to_klg": "Add file to documents",

View File

@ -18,11 +18,14 @@ import re
from pydantic import BaseModel, Extra, Field, root_validator
from pilot.configs.model_config import LOGDIR
from pilot.prompts.base import PromptValue
from pilot.configs.config import Config
T = TypeVar("T")
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
CFG = Config()
class BaseOutputParser(ABC):
"""Class to parse the output of an LLM call.
@ -33,9 +36,39 @@ class BaseOutputParser(ABC):
self.sep = sep
self.is_stream_out = is_stream_out
def __post_process_code(code):
sep = "\n```"
if sep in code:
blocks = code.split(sep)
if len(blocks) % 2 == 1:
for i in range(1, len(blocks), 2):
blocks[i] = blocks[i].replace("\\_", "_")
code = sep.join(blocks)
return code
# TODO 后续和模型绑定
def _parse_model_stream_resp(self, response, sep: str):
pass
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
"""
if data["error_code"] == 0:
if "vicuna" in CFG.LLM_MODEL:
output = data["text"].strip()
else:
output = data["text"].strip()
output = self.__post_process_code(output)
yield output
else:
output = (
data["text"] + f" (error_code: {data['error_code']})"
)
yield output
def _parse_model_nostream_resp(self, response, sep: str):
text = response.text.strip()
@ -64,7 +97,7 @@ class BaseOutputParser(ABC):
else:
raise ValueError("Model server error!code=" + respObj_ex["error_code"])
def parse_model_server_out(self, response) -> str:
def parse_model_server_out(self, response):
"""
parse the model server http response
Args:

View File

@ -1,6 +1,7 @@
from abc import ABC, abstractmethod
import datetime
import traceback
import json
from pydantic import BaseModel, Field, root_validator, validator, Extra
from typing import (
Any,
@ -41,6 +42,7 @@ headers = {"User-Agent": "dbgpt Client"}
CFG = Config()
class BaseChat(ABC):
chat_scene: str = None
llm_model: Any = None
@ -89,8 +91,7 @@ class BaseChat(ABC):
def do_with_prompt_response(self, prompt_response):
pass
def call(self):
def call(self, show_fn, state):
input_values = self.generate_input_values()
### Chat sequence advance
@ -164,6 +165,7 @@ class BaseChat(ABC):
prompt_define_response, result
)
)
show_fn(state, self.current_ai_response())
else:
response = requests.post(
urljoin(CFG.MODEL_SERVER, "generate_stream"),
@ -171,9 +173,14 @@ class BaseChat(ABC):
json=payload,
timeout=120,
)
#TODO
show_fn(state, "")
ai_response_text = self.prompt_template.output_parser.parse_model_server_out(response)
show_info =""
for resp_text_trunck in ai_response_text:
show_info = resp_text_trunck
show_fn(state, resp_text_trunck + "")
self.current_message.add_ai_message(show_info)
except Exception as e:
print(traceback.format_exc())
@ -181,9 +188,11 @@ class BaseChat(ABC):
self.current_message.add_view_message(
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
)
show_fn(state, self.current_ai_response())
### 对话记录存储
self.memory.append(self.current_message)
def generate_llm_text(self) -> str:
text = self.prompt_template.template_define + self.prompt_template.sep
### 线处理历史信息
@ -229,8 +238,6 @@ class BaseChat(ABC):
return text
def chat_show(self):
pass
# 暂时为了兼容前端
def current_ai_response(self) -> str:

View File

@ -37,6 +37,7 @@ from pilot.conversation import (
conv_templates,
conversation_sql_mode,
conversation_types,
chat_mode_title,
default_conversation,
)
from pilot.common.plugins import scan_plugins
@ -95,6 +96,11 @@ default_knowledge_base_dialogue = get_lang_text(
add_knowledge_base_dialogue = get_lang_text(
"knowledge_qa_type_add_knowledge_base_dialogue"
)
url_knowledge_dialogue = get_lang_text(
"knowledge_qa_type_url_knowledge_dialogue"
)
knowledge_qa_type_list = [
llm_native_dialogue,
default_knowledge_base_dialogue,
@ -115,7 +121,7 @@ def gen_sqlgen_conversation(dbname):
db_connect = CFG.local_db.get_session(dbname)
schemas = CFG.local_db.table_simple_info(db_connect)
for s in schemas:
message += s["schema_info"] + ";"
message += s+ ";"
return get_lang_text("sql_schema_info").format(dbname, message)
@ -211,9 +217,9 @@ def post_process_code(code):
def get_chat_mode(selected, mode, sql_mode, db_selector) -> ChatScene:
if "插件模式" == selected:
if chat_mode_title['chat_use_plugin'] == selected:
return ChatScene.ChatExecution
elif "知识问答" == selected:
elif chat_mode_title['knowledge_qa'] == selected:
if mode == conversation_types["default_knownledge"]:
return ChatScene.ChatKnowledge
elif mode == conversation_types["custome"]:
@ -226,37 +232,50 @@ def get_chat_mode(selected, mode, sql_mode, db_selector) -> ChatScene:
def http_bot(
state, selected, plugin_selector, mode, sql_mode, db_selector, temperature, max_new_tokens, request: gr.Request
state, selected, plugin_selector, mode, sql_mode, db_selector, url_input, temperature, max_new_tokens, request: gr.Request
):
logger.info(f"User message send!{state.conv_id},{selected},{mode},{sql_mode},{db_selector},{plugin_selector}")
start_tstamp = time.time()
scene:ChatScene = get_chat_mode(mode, sql_mode, db_selector)
print(f"当前对话模式:{scene.value}")
scene:ChatScene = get_chat_mode(selected, mode, sql_mode, db_selector)
print(f"now chat scene:{scene.value}")
model_name = CFG.LLM_MODEL
def chatbot_callback(state, message):
print(f"chatbot_callback:{message}")
state.messages[-1][-1] = f"{message}"
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
if ChatScene.ChatWithDb == scene:
logger.info("基于DB对话走新的模式")
logger.info("chat with db mode use new architecture design")
chat_param = {
"chat_session_id": state.conv_id,
"db_name": db_selector,
"user_input": state.last_user_input,
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
chat.call()
state.messages[-1][-1] = f"{chat.current_ai_response()}"
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
chat.call(show_fn=chatbot_callback, state= state)
elif ChatScene.ChatExecution == scene:
logger.info("插件模式对话走新的模式")
logger.info("plugin mode use new architecture design")
chat_param = {
"chat_session_id": state.conv_id,
"plugin_selector": plugin_selector,
"user_input": state.last_user_input,
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
chat.call()
state.messages[-1][-1] = f"{chat.current_ai_response()}"
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
chat.call(chatbot_callback, state)
# def generate_numbers():
# for i in range(10):
# time.sleep(0.5)
# yield f"Message:{i}"
#
# def showMessage(message):
# return message
#
# for n in generate_numbers():
# state.messages[-1][-1] = n + "▌"
# yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
else:
dbname = db_selector
@ -284,30 +303,45 @@ def http_bot(
new_state.conv_id = uuid.uuid4().hex
state = new_state
else:
### 后续对话
query = state.messages[-2][1]
# 第一轮对话需要加入提示Prompt
if mode == conversation_types["custome"]:
template_name = "conv_one_shot"
new_state = conv_templates[template_name].copy()
# prompt 中添加上下文提示, 根据已有知识对话, 上下文提示是否也应该放在第一轮, 还是每一轮都添加上下文?
# 如果用户侧的问题跨度很大, 应该每一轮都加提示。
if db_selector:
new_state.append_message(
new_state.roles[0], gen_sqlgen_conversation(dbname) + query
)
new_state.append_message(new_state.roles[1], None)
else:
new_state.append_message(new_state.roles[0], query)
new_state.append_message(new_state.roles[1], None)
state = new_state
prompt = state.get_prompt()
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["default_knownledge"] and not db_selector:
vector_store_config = {
"vector_store_name": "default",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = KnowledgeEmbedding(
file_path="",
model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config=vector_store_config,
)
query = state.messages[-2][1]
knqa = KnownLedgeBaseQA()
state.messages[-2][1] = knqa.get_similar_answer(query)
prompt = state.get_prompt()
docs = knowledge_embedding_client.similar_search(query, VECTOR_SEARCH_TOP_K)
prompt = KnownLedgeBaseQA.build_knowledge_prompt(query, docs, state)
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["custome"] and not db_selector:
persist_dir = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, vector_store_name["vs_name"] + ".vectordb"
)
print("向量数据库持久化地址: ", persist_dir)
knowledge_embedding_client = KnowledgeEmbedding(
file_path="",
model_name=LLM_MODEL_CONFIG["sentence-transforms"],
vector_store_config={
"vector_store_name": vector_store_name["vs_name"],
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
},
)
print("vector store name: ", vector_store_name["vs_name"])
vector_store_config = {
"vector_store_name": vector_store_name["vs_name"],
@ -327,6 +361,27 @@ def http_bot(
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["url"] and url_input:
print("url: ", url_input)
vector_store_config = {
"vector_store_name": url_input,
"text_field": "content",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = KnowledgeEmbedding(
file_path=url_input,
model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config=vector_store_config,
)
query = state.messages[-2][1]
docs = knowledge_embedding_client.similar_search(query, VECTOR_SEARCH_TOP_K)
prompt = KnownLedgeBaseQA.build_knowledge_prompt(query, docs, state)
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
# Make requests
payload = {
"model": model_name,
@ -355,13 +410,24 @@ def http_bot(
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
"""
if data["error_code"] == 0:
output = data["text"][skip_echo_len:].strip()
if "vicuna" in CFG.LLM_MODEL:
output = data["text"][skip_echo_len:].strip()
else:
output = data["text"].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + ""
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
output = (
data["text"] + f" (error_code: {data['error_code']})"
)
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
@ -371,56 +437,7 @@ def http_bot(
enable_btn,
)
return
try:
# Stream output
response = requests.post(
urljoin(CFG.MODEL_SERVER, "generate_stream"),
headers=headers,
json=payload,
stream=True,
timeout=20,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
"""
if data["error_code"] == 0:
if "vicuna" in CFG.LLM_MODEL:
output = data["text"][skip_echo_len:].strip()
else:
output = data["text"].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + ""
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
) * 5
else:
output = (
data["text"] + f" (error_code: {data['error_code']})"
)
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
yield (state, state.to_gradio_chatbot()) + (
@ -432,29 +449,29 @@ def http_bot(
)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
# 记录运行日志
finish_tstamp = time.time()
logger.info(f"{output}")
# 记录运行日志
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
block_css = (
code_highlight_css
+ """
code_highlight_css
+ """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
@ -477,15 +494,12 @@ def change_sql_mode(sql_mode):
def change_mode(mode):
if mode in [default_knowledge_base_dialogue, llm_native_dialogue]:
return gr.update(visible=False)
else:
if mode in [add_knowledge_base_dialogue]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def change_tab():
autogpt = True
def build_single_model_ui():
notice_markdown = get_lang_text("db_gpt_introduction")
@ -548,15 +562,14 @@ def build_single_model_ui():
sql_vs_setting = gr.Markdown(get_lang_text("sql_vs_setting"))
sql_mode.change(fn=change_sql_mode, inputs=sql_mode, outputs=sql_vs_setting)
tab_qa = gr.TabItem(get_lang_text("knowledge_qa"), elem_id="QA")
tab_plugin = gr.TabItem("插件模式", elem_id="PLUGIN")
tab_plugin = gr.TabItem(get_lang_text("chat_use_plugin"), elem_id="PLUGIN")
# tab_plugin.select(change_func)
with tab_plugin:
print("tab_plugin in...")
with gr.Row(elem_id="plugin_selector"):
# TODO
plugin_selector = gr.Dropdown(
label="请选择插件",
label=get_lang_text("select_plugin"),
choices=list(plugins_select_info().keys()),
value="",
interactive=True,
@ -578,6 +591,7 @@ def build_single_model_ui():
llm_native_dialogue,
default_knowledge_base_dialogue,
add_knowledge_base_dialogue,
url_knowledge_dialogue,
],
show_label=False,
value=llm_native_dialogue,
@ -586,6 +600,16 @@ def build_single_model_ui():
get_lang_text("configure_knowledge_base"), open=False
)
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
url_input = gr.Textbox(label=get_lang_text("url_input_label"), lines=1, interactive=True)
def show_url_input(evt:gr.SelectData):
if evt.value == url_knowledge_dialogue:
return gr.update(visible=True)
else:
return gr.update(visible=False)
mode.select(fn=show_url_input, inputs=None, outputs=url_input)
with vs_setting:
vs_name = gr.Textbox(
label=get_lang_text("new_klg_name"), lines=1, interactive=True
@ -636,7 +660,7 @@ def build_single_model_ui():
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
http_bot,
[state, selected, plugin_selected, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, selected, plugin_selected, mode, sql_mode, db_selector, url_input, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
@ -645,7 +669,7 @@ def build_single_model_ui():
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
[state, selected, plugin_selected, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, selected, plugin_selected, mode, sql_mode, db_selector, url_input, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
@ -653,7 +677,7 @@ def build_single_model_ui():
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
[state, selected, plugin_selected, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, selected, plugin_selected, mode, sql_mode, db_selector, url_input, temperature, max_output_tokens],
[state, chatbot] + btn_list,
)
vs_add.click(
@ -760,8 +784,8 @@ if __name__ == "__main__":
# 加载插件可执行命令
command_categories = [
"pilot.commands.audio_text",
"pilot.commands.image_gen",
"pilot.commands.built_in.audio_text",
"pilot.commands.built_in.image_gen",
]
# 排除禁用命令
command_categories = [

View File

View File

@ -11,6 +11,7 @@ from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
from pilot.source_embedding.csv_embedding import CSVEmbedding
from pilot.source_embedding.markdown_embedding import MarkdownEmbedding
from pilot.source_embedding.pdf_embedding import PDFEmbedding
from pilot.source_embedding.url_embedding import URLEmbedding
from pilot.vector_store.connector import VectorStoreConnector
CFG = Config()
@ -61,6 +62,12 @@ class KnowledgeEmbedding:
model_name=self.model_name,
vector_store_config=self.vector_store_config,
)
elif self.file_type == "url":
embedding = URLEmbedding(
file_path=self.file_path,
model_name=self.model_name,
vector_store_config=self.vector_store_config,
)
return embedding