refactor(agent): Refactor resource of agents (#1518)

This commit is contained in:
Fangyin Cheng
2024-05-15 09:57:19 +08:00
committed by GitHub
parent db4d318a5f
commit 559affe87d
102 changed files with 2633 additions and 2549 deletions

View File

@@ -0,0 +1,95 @@
"""Knowledge resource."""
import dataclasses
from typing import TYPE_CHECKING, Any, List, Optional, Type
import cachetools
from dbgpt.util.cache_utils import cached
from .base import Resource, ResourceParameters, ResourceType
if TYPE_CHECKING:
from dbgpt.core import Chunk
from dbgpt.rag.retriever.base import BaseRetriever
from dbgpt.storage.vector_store.filters import MetadataFilters
@dataclasses.dataclass
class RetrieverResourceParameters(ResourceParameters):
"""Retriever resource parameters."""
pass
class RetrieverResource(Resource[ResourceParameters]):
"""Retriever resource.
Retrieve knowledge chunks from a retriever.
"""
def __init__(self, name: str, retriever: "BaseRetriever"):
"""Create a new RetrieverResource."""
self._name = name
self._retriever = retriever
@property
def name(self) -> str:
"""Return the resource name."""
return self._name
@property
def retriever(self) -> "BaseRetriever":
"""Return the retriever."""
return self._retriever
@classmethod
def type(cls) -> ResourceType:
"""Return the resource type."""
return ResourceType.Knowledge
@classmethod
def resource_parameters_class(cls) -> Type[ResourceParameters]:
"""Return the resource parameters class."""
return RetrieverResourceParameters
@cached(cachetools.TTLCache(maxsize=100, ttl=10))
async def get_prompt(
self,
*,
lang: str = "en",
prompt_type: str = "default",
question: Optional[str] = None,
resource_name: Optional[str] = None,
**kwargs
) -> str:
"""Get the prompt for the resource."""
if not question:
raise ValueError("Question is required for knowledge resource.")
chunks = await self.retrieve(question)
content = "\n".join([chunk.content for chunk in chunks])
prompt_template = "known information: {content}"
prompt_template_zh = "已知信息: {content}"
if lang == "en":
return prompt_template.format(content=content)
return prompt_template_zh.format(content=content)
async def async_execute(
self, *args, resource_name: Optional[str] = None, **kwargs
) -> Any:
"""Execute the resource asynchronously."""
return await self.retrieve(*args, **kwargs)
async def retrieve(
self, query: str, filters: Optional["MetadataFilters"] = None
) -> List["Chunk"]:
"""Retrieve knowledge chunks.
Args:
query (str): query text.
filters: (Optional[MetadataFilters]) metadata filters.
Returns:
List[Chunk]: list of chunks
"""
return await self.retriever.aretrieve(query, filters)