mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-15 22:19:28 +00:00
feat(ChatKnowledge): ChatKnowledge Support Keyword Retrieve (#1624)
Co-authored-by: Fangyin Cheng <staneyffer@gmail.com>
This commit is contained in:
@@ -22,7 +22,7 @@ from dbgpt.configs.model_config import (
|
||||
EMBEDDING_MODEL_CONFIG,
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
)
|
||||
from dbgpt.core import Chunk, LLMClient
|
||||
from dbgpt.core import LLMClient
|
||||
from dbgpt.core.awel.dag.dag_manager import DAGManager
|
||||
from dbgpt.model import DefaultLLMClient
|
||||
from dbgpt.model.cluster import WorkerManagerFactory
|
||||
@@ -31,12 +31,11 @@ from dbgpt.rag.chunk_manager import ChunkParameters
|
||||
from dbgpt.rag.embedding import EmbeddingFactory
|
||||
from dbgpt.rag.knowledge import ChunkStrategy, KnowledgeFactory, KnowledgeType
|
||||
from dbgpt.serve.core import BaseService
|
||||
from dbgpt.serve.rag.connector import VectorStoreConnector
|
||||
from dbgpt.storage.metadata import BaseDao
|
||||
from dbgpt.storage.metadata._base_dao import QUERY_SPEC
|
||||
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
||||
from dbgpt.storage.vector_store.connector import VectorStoreConnector
|
||||
from dbgpt.util.dbgpts.loader import DBGPTsLoader
|
||||
from dbgpt.util.executor_utils import ExecutorFactory
|
||||
from dbgpt.util.pagination_utils import PaginationResult
|
||||
from dbgpt.util.tracer import root_tracer, trace
|
||||
|
||||
@@ -481,7 +480,6 @@ class Service(BaseService[KnowledgeSpaceEntity, SpaceServeRequest, SpaceServeRes
|
||||
)
|
||||
)
|
||||
logger.info(f"begin save document chunks, doc:{doc.doc_name}")
|
||||
# return chunk_docs
|
||||
|
||||
@trace("async_doc_embedding")
|
||||
async def async_doc_embedding(
|
||||
@@ -495,7 +493,7 @@ class Service(BaseService[KnowledgeSpaceEntity, SpaceServeRequest, SpaceServeRes
|
||||
- doc: doc
|
||||
"""
|
||||
|
||||
logger.info(f"async doc embedding sync, doc:{doc.doc_name}")
|
||||
logger.info(f"async doc persist sync, doc:{doc.doc_name}")
|
||||
try:
|
||||
with root_tracer.start_span(
|
||||
"app.knowledge.assembler.persist",
|
||||
@@ -503,17 +501,17 @@ class Service(BaseService[KnowledgeSpaceEntity, SpaceServeRequest, SpaceServeRes
|
||||
):
|
||||
assembler = await EmbeddingAssembler.aload_from_knowledge(
|
||||
knowledge=knowledge,
|
||||
index_store=vector_store_connector.index_client,
|
||||
chunk_parameters=chunk_parameters,
|
||||
vector_store_connector=vector_store_connector,
|
||||
)
|
||||
chunk_docs = assembler.get_chunks()
|
||||
doc.chunk_size = len(chunk_docs)
|
||||
vector_ids = await assembler.apersist()
|
||||
doc.status = SyncStatus.FINISHED.name
|
||||
doc.result = "document embedding success"
|
||||
doc.result = "document persist into index store success"
|
||||
if vector_ids is not None:
|
||||
doc.vector_ids = ",".join(vector_ids)
|
||||
logger.info(f"async document embedding, success:{doc.doc_name}")
|
||||
logger.info(f"async document persist index store success:{doc.doc_name}")
|
||||
# save chunk details
|
||||
chunk_entities = [
|
||||
DocumentChunkEntity(
|
||||
|
Reference in New Issue
Block a user