mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-12 05:32:32 +00:00
WEB API independent
This commit is contained in:
parent
560773296e
commit
5f9c36a050
@ -1,10 +1,17 @@
|
||||
import json
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
CFG = Config()
|
||||
|
||||
if __name__ == "__main__":
|
||||
connect = CFG.local_db.get_session("gpt-user")
|
||||
datas = CFG.local_db.run(connect, "SELECT * FROM users; ")
|
||||
# connect = CFG.local_db.get_session("gpt-user")
|
||||
# datas = CFG.local_db.run(connect, "SELECT * FROM users; ")
|
||||
|
||||
# print(datas)
|
||||
|
||||
str = """{ "thoughts": "thought text", "sql": "SELECT COUNT(DISTINCT user_id) FROM transactions_order WHERE user_id IN (SELECT DISTINCT user_id FROM users WHERE country='China') AND create_time BETWEEN 20230101 AND 20230131" ,}"""
|
||||
|
||||
print(str.find("["))
|
||||
|
||||
|
||||
print(datas)
|
||||
|
@ -14,7 +14,6 @@ def generate_stream(
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
max_new_tokens = int(params.get("max_new_tokens", 2048))
|
||||
stop_str = params.get("stop", None)
|
||||
|
||||
input_ids = tokenizer(prompt).input_ids
|
||||
output_ids = list(input_ids)
|
||||
|
||||
|
@ -113,25 +113,36 @@ class BaseOutputParser(ABC):
|
||||
ai_response = ai_response.replace("\n", " ")
|
||||
ai_response = ai_response.replace("\_", "_")
|
||||
ai_response = ai_response.replace("\*", "*")
|
||||
ai_response = ai_response.replace("\t", "")
|
||||
print("un_stream ai response:", ai_response)
|
||||
return ai_response
|
||||
else:
|
||||
raise ValueError("Model server error!code=" + resp_obj_ex["error_code"])
|
||||
|
||||
def __illegal_json_ends(self, s):
|
||||
temp_json = s
|
||||
illegal_json_ends_1 = [", }", ",}"]
|
||||
illegal_json_ends_2 = ", ]", ",]"
|
||||
for illegal_json_end in illegal_json_ends_1:
|
||||
temp_json = temp_json.replace(illegal_json_end, " }")
|
||||
for illegal_json_end in illegal_json_ends_2:
|
||||
temp_json = temp_json.replace(illegal_json_end, " ]")
|
||||
return temp_json
|
||||
|
||||
def __extract_json(self, s):
|
||||
|
||||
temp_json = self.__json_interception(s, True)
|
||||
if not temp_json:
|
||||
temp_json = self.__json_interception(s)
|
||||
try:
|
||||
json.loads(temp_json)
|
||||
temp_json = self.__illegal_json_ends(temp_json)
|
||||
return temp_json
|
||||
except Exception as e:
|
||||
raise ValueError("Failed to find a valid json response!" + temp_json)
|
||||
|
||||
def __json_interception(self, s, is_json_array: bool = False):
|
||||
if is_json_array:
|
||||
i = s.index("[")
|
||||
i = s.find("[")
|
||||
if i <0:
|
||||
return None
|
||||
count = 1
|
||||
@ -145,7 +156,7 @@ class BaseOutputParser(ABC):
|
||||
assert count == 0
|
||||
return s[i: j + 1]
|
||||
else:
|
||||
i = s.index("{")
|
||||
i = s.find("{")
|
||||
if i <0:
|
||||
return None
|
||||
count = 1
|
||||
@ -189,6 +200,7 @@ class BaseOutputParser(ABC):
|
||||
.replace("\\n", " ")
|
||||
.replace("\\", " ")
|
||||
)
|
||||
cleaned_output = self.__illegal_json_ends(cleaned_output)
|
||||
return cleaned_output
|
||||
|
||||
def parse_view_response(self, ai_text, data) -> str:
|
||||
|
@ -51,6 +51,9 @@ class PromptTemplate(BaseModel, ABC):
|
||||
|
||||
need_historical_messages: bool = False
|
||||
|
||||
temperature: float = 0.6
|
||||
max_new_tokens: int = 1024
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
|
@ -48,8 +48,6 @@ CFG = Config()
|
||||
class BaseChat(ABC):
|
||||
chat_scene: str = None
|
||||
llm_model: Any = None
|
||||
temperature: float = 0.6
|
||||
max_new_tokens: int = 1024
|
||||
# By default, keep the last two rounds of conversation records as the context
|
||||
chat_retention_rounds: int = 1
|
||||
|
||||
@ -117,9 +115,9 @@ class BaseChat(ABC):
|
||||
|
||||
payload = {
|
||||
"model": self.llm_model,
|
||||
"prompt": self.generate_llm_text(),
|
||||
"temperature": float(self.temperature),
|
||||
"max_new_tokens": int(self.max_new_tokens),
|
||||
"prompt": self.generate_llm_text().replace("ai:", "assistant:"),
|
||||
"temperature": float(self.prompt_template.temperature),
|
||||
"max_new_tokens": int(self.prompt_template.max_new_tokens),
|
||||
"stop": self.prompt_template.sep,
|
||||
}
|
||||
return payload
|
||||
@ -128,6 +126,7 @@ class BaseChat(ABC):
|
||||
# TODO Retry when server connection error
|
||||
payload = self.__call_base()
|
||||
|
||||
|
||||
self.skip_echo_len = len(payload.get("prompt").replace("</s>", " ")) + 11
|
||||
logger.info(f"Requert: \n{payload}")
|
||||
ai_response_text = ""
|
||||
|
@ -3,7 +3,7 @@
|
||||
"name": "sale_report",
|
||||
"introduce": "",
|
||||
"layout": "TODO",
|
||||
"supported_chart_type":["HeatMap","sheet", "LineChart", "PieChart", "BarChart", "Scatterplot", "IndicatorValue", "Table"],
|
||||
"supported_chart_type":["FacetChart", "GaugeChart", "RadarChart", "Sheet", "LineChart", "PieChart", "BarChart", "PointChart", "IndicatorValue"],
|
||||
"key_metrics":[],
|
||||
"trends": []
|
||||
}
|
@ -14,8 +14,8 @@ EXAMPLES = [
|
||||
\"sql\": \"SELECT city FROM users where user_name='test1'\",
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -29,10 +29,10 @@ EXAMPLES = [
|
||||
\"sql\": \"SELECT b.* FROM users a LEFT JOIN tran_order b ON a.user_name=b.user_name where a.city='成都'\",
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
sql_data_example = ExampleSelector(
|
||||
|
@ -10,7 +10,6 @@ CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = None
|
||||
|
||||
|
||||
_DEFAULT_TEMPLATE = """
|
||||
You are a SQL expert. Given an input question, create a syntactically correct {dialect} query.
|
||||
|
||||
@ -36,6 +35,11 @@ PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = False
|
||||
|
||||
# Temperature is a configuration hyperparameter that controls the randomness of language model output.
|
||||
# A high temperature produces more unpredictable and creative results, while a low temperature produces more common and conservative output.
|
||||
# For example, if you adjust the temperature to 0.5, the model will usually generate text that is more predictable and less creative than if you set the temperature to 1.0.
|
||||
PROMPT_TEMPERATURE = 0.5
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatWithDbExecute.value(),
|
||||
input_variables=["input", "table_info", "dialect", "top_k", "response"],
|
||||
@ -47,5 +51,7 @@ prompt = PromptTemplate(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
example_selector=sql_data_example,
|
||||
# example_selector=None,
|
||||
temperature=PROMPT_TEMPERATURE
|
||||
)
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
@ -14,8 +14,8 @@ EXAMPLES = [
|
||||
\"command\": {\"name\": \"command name\", \"args\": {\"arg name\": \"value\"}},
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -30,10 +30,10 @@ EXAMPLES = [
|
||||
\"command\": {\"name\": \"command name\", \"args\": {\"arg name\": \"value\"}},
|
||||
}""",
|
||||
"example": True,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
plugin_example = ExampleSelector(examples_record=EXAMPLES, use_example=True)
|
||||
|
Loading…
Reference in New Issue
Block a user