mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-08 04:23:35 +00:00
feature:add milvus store
This commit is contained in:
@@ -2,8 +2,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import argparse
|
||||
|
||||
from pilot.configs.model_config import DATASETS_DIR, LLM_MODEL_CONFIG, VECTOR_SEARCH_TOP_K, \
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.vectorstores import Milvus
|
||||
|
||||
from pilot.configs.model_config import DATASETS_DIR, LLM_MODEL_CONFIG, VECTOR_SEARCH_TOP_K, VECTOR_STORE_CONFIG
|
||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
|
||||
@@ -12,15 +14,15 @@ class LocalKnowledgeInit:
|
||||
model_name = LLM_MODEL_CONFIG["text2vec"]
|
||||
top_k: int = VECTOR_SEARCH_TOP_K
|
||||
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
def __init__(self, vector_store_config) -> None:
|
||||
self.vector_store_config = vector_store_config
|
||||
|
||||
def knowledge_persist(self, file_path, vector_name, append_mode):
|
||||
def knowledge_persist(self, file_path, append_mode):
|
||||
""" knowledge persist """
|
||||
kv = KnowledgeEmbedding(
|
||||
file_path=file_path,
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
vector_store_config= {"vector_store_name":vector_name, "vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH})
|
||||
vector_store_config= self.vector_store_config)
|
||||
vector_store = kv.knowledge_persist_initialization(append_mode)
|
||||
return vector_store
|
||||
|
||||
@@ -34,11 +36,15 @@ class LocalKnowledgeInit:
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--vector_name", type=str, default="default")
|
||||
parser.add_argument("--vector_name", type=str, default="keting")
|
||||
parser.add_argument("--append", type=bool, default=False)
|
||||
parser.add_argument("--store_type", type=str, default="Chroma")
|
||||
args = parser.parse_args()
|
||||
vector_name = args.vector_name
|
||||
append_mode = args.append
|
||||
kv = LocalKnowledgeInit()
|
||||
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, vector_name=vector_name, append_mode=append_mode)
|
||||
store_type = args.store_type
|
||||
vector_store_config = {"url": VECTOR_STORE_CONFIG["url"], "port": VECTOR_STORE_CONFIG["port"], "vector_store_name":vector_name, "vector_store_type":store_type}
|
||||
print(vector_store_config)
|
||||
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
|
||||
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
||||
print("your knowledge embedding success...")
|
Reference in New Issue
Block a user