rm fschat relay

This commit is contained in:
csunny 2023-05-11 10:59:08 +08:00
parent 75fbf7f504
commit 6d76825a10
7 changed files with 256 additions and 7 deletions

View File

@ -7,11 +7,9 @@ dependencies:
- python=3.9
- cudatoolkit
- pip
- pytorch=1.12.1
- pytorch-mutex=1.0=cuda
- torchaudio=0.12.1
- torchvision=0.13.1
- pip:
- pytorch
- accelerate==0.16.0
- aiohttp==3.8.4
- aiosignal==1.3.1
@ -60,7 +58,6 @@ dependencies:
- gradio==3.23
- gradio-client==0.0.8
- wandb
- fschat==0.1.10
- llama-index==0.5.27
- pymysql
- unstructured==0.6.3

View File

@ -5,6 +5,7 @@ import torch
import os
import nltk
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
MODEL_PATH = os.path.join(ROOT_PATH, "models")
PILOT_PATH = os.path.join(ROOT_PATH, "pilot")

121
pilot/model/compression.py Normal file
View File

@ -0,0 +1,121 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import dataclasses
import torch
from torch import Tensor
import torch.nn as nn
from torch.nn import functional as F
@dataclasses.dataclass
class CompressionConfig:
"""Group-wise quantization."""
num_bits: int
group_size: int
group_dim: int
symmetric: bool
enabled: bool = True
default_compression_config = CompressionConfig(
num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True)
class CLinear(nn.Module):
"""Compressed Linear Layer."""
def __init__(self, weight, bias, device):
super().__init__()
self.weight = compress(weight.data.to(device), default_compression_config)
self.bias = bias
def forward(self, input: Tensor) -> Tensor:
weight = decompress(self.weight, default_compression_config)
return F.linear(input, weight, self.bias)
def compress_module(module, target_device):
for attr_str in dir(module):
target_attr = getattr(module, attr_str)
if type(target_attr) == torch.nn.Linear:
setattr(module, attr_str,
CLinear(target_attr.weight, target_attr.bias, target_device))
for name, child in module.named_children():
compress_module(child, target_device)
def compress(tensor, config):
"""Simulate group-wise quantization."""
if not config.enabled:
return tensor
group_size, num_bits, group_dim, symmetric = (
config.group_size, config.num_bits, config.group_dim, config.symmetric)
assert num_bits <= 8
original_shape = tensor.shape
num_groups = (original_shape[group_dim] + group_size - 1) // group_size
new_shape = (original_shape[:group_dim] + (num_groups, group_size) +
original_shape[group_dim+1:])
# Pad
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
if pad_len != 0:
pad_shape = original_shape[:group_dim] + (pad_len,) + original_shape[group_dim+1:]
tensor = torch.cat([
tensor,
torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)],
dim=group_dim)
data = tensor.view(new_shape)
# Quantize
if symmetric:
B = 2 ** (num_bits - 1) - 1
scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0]
data = data * scale
data = data.clamp_(-B, B).round_().to(torch.int8)
return data, scale, original_shape
else:
B = 2 ** num_bits - 1
mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0]
mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0]
scale = B / (mx - mn)
data = data - mn
data.mul_(scale)
data = data.clamp_(0, B).round_().to(torch.uint8)
return data, mn, scale, original_shape
def decompress(packed_data, config):
"""Simulate group-wise dequantization."""
if not config.enabled:
return packed_data
group_size, num_bits, group_dim, symmetric = (
config.group_size, config.num_bits, config.group_dim, config.symmetric)
# Dequantize
if symmetric:
data, scale, original_shape = packed_data
data = data / scale
else:
data, mn, scale, original_shape = packed_data
data = data / scale
data.add_(mn)
# Unpad
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
if pad_len:
padded_original_shape = (
original_shape[:group_dim] +
(original_shape[group_dim] + pad_len,) +
original_shape[group_dim+1:])
data = data.reshape(padded_original_shape)
indices = [slice(0, x) for x in original_shape]
return data[indices].contiguous()
else:
return data.view(original_shape)

View File

@ -10,7 +10,7 @@ from transformers import (
AutoModel
)
from fastchat.serve.compression import compress_module
from pilot.model.compression import compress_module
class ModelLoader(metaclass=Singleton):
"""Model loader is a class for model load

View File

@ -24,7 +24,7 @@ from pilot.conversation import (
SeparatorStyle
)
from fastchat.utils import (
from pilot.utils import (
build_logger,
server_error_msg,
violates_moderation,

View File

@ -3,6 +3,21 @@
import torch
import datetime
import logging
import logging.handlers
import os
import sys
import requests
from pilot.configs.model_config import LOGDIR
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
handler = None
def get_gpu_memory(max_gpus=None):
gpu_memory = []
num_gpus = (
@ -20,3 +35,119 @@ def get_gpu_memory(max_gpus=None):
available_memory = total_memory - allocated_memory
gpu_memory.append(available_memory)
return gpu_memory
def build_logger(logger_name, logger_filename):
global handler
formatter = logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
# Set the format of root handlers
if not logging.getLogger().handlers:
logging.basicConfig(level=logging.INFO, encoding='utf-8')
logging.getLogger().handlers[0].setFormatter(formatter)
# Redirect stdout and stderr to loggers
stdout_logger = logging.getLogger("stdout")
stdout_logger.setLevel(logging.INFO)
sl = StreamToLogger(stdout_logger, logging.INFO)
sys.stdout = sl
stderr_logger = logging.getLogger("stderr")
stderr_logger.setLevel(logging.ERROR)
sl = StreamToLogger(stderr_logger, logging.ERROR)
sys.stderr = sl
# Get logger
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
# Add a file handler for all loggers
if handler is None:
os.makedirs(LOGDIR, exist_ok=True)
filename = os.path.join(LOGDIR, logger_filename)
handler = logging.handlers.TimedRotatingFileHandler(
filename, when='D', utc=True)
handler.setFormatter(formatter)
for name, item in logging.root.manager.loggerDict.items():
if isinstance(item, logging.Logger):
item.addHandler(handler)
return logger
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.terminal = sys.stdout
self.logger = logger
self.log_level = log_level
self.linebuf = ''
def __getattr__(self, attr):
return getattr(self.terminal, attr)
def write(self, buf):
temp_linebuf = self.linebuf + buf
self.linebuf = ''
for line in temp_linebuf.splitlines(True):
# From the io.TextIOWrapper docs:
# On output, if newline is None, any '\n' characters written
# are translated to the system default line separator.
# By default sys.stdout.write() expects '\n' newlines and then
# translates them so this is still cross platform.
if line[-1] == '\n':
encoded_message = line.encode('utf-8', 'ignore').decode('utf-8')
self.logger.log(self.log_level, encoded_message.rstrip())
else:
self.linebuf += line
def flush(self):
if self.linebuf != '':
encoded_message = self.linebuf.encode('utf-8', 'ignore').decode('utf-8')
self.logger.log(self.log_level, encoded_message.rstrip())
self.linebuf = ''
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def violates_moderation(text):
"""
Check whether the text violates OpenAI moderation API.
"""
url = "https://api.openai.com/v1/moderations"
headers = {"Content-Type": "application/json",
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
text = text.replace("\n", "")
data = "{" + '"input": ' + f'"{text}"' + "}"
data = data.encode("utf-8")
try:
ret = requests.post(url, headers=headers, data=data, timeout=5)
flagged = ret.json()["results"][0]["flagged"]
except requests.exceptions.RequestException as e:
flagged = False
except KeyError as e:
flagged = False
return flagged
def pretty_print_semaphore(semaphore):
if semaphore is None:
return "None"
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"

View File

@ -48,7 +48,6 @@ notebook
gradio==3.23
gradio-client==0.0.8
wandb
fschat==0.1.10
llama-index==0.5.27
pymysql
unstructured==0.6.3