chore: Add pylint for DB-GPT rag lib (#1267)

This commit is contained in:
Fangyin Cheng
2024-03-07 23:27:43 +08:00
committed by GitHub
parent aaaf34db17
commit 7446817340
70 changed files with 1135 additions and 587 deletions

View File

@@ -1,5 +1,7 @@
"""SchemaLinking by LLM."""
from functools import reduce
from typing import List, Optional
from typing import List, Optional, cast
from dbgpt.core import LLMClient, ModelMessage, ModelMessageRoleType, ModelRequest
from dbgpt.datasource.rdbms.base import RDBMSDatabase
@@ -9,32 +11,41 @@ from dbgpt.rag.summary.rdbms_db_summary import _parse_db_summary
from dbgpt.storage.vector_store.connector import VectorStoreConnector
from dbgpt.util.chat_util import run_async_tasks
INSTRUCTION = (
"You need to filter out the most relevant database table schema information (it may be a single "
"table or multiple tables) required to generate the SQL of the question query from the given "
"database schema information. First, I will show you an example of an instruction followed by "
"the correct schema response. Then, I will give you a new instruction, and you should write "
"the schema response that appropriately completes the request.\n### Example1 Instruction:\n"
"['job(id, name, age)', 'user(id, name, age)', 'student(id, name, age, info)']\n### Example1 "
"Input:\nFind the age of student table\n### Example1 Response:\n['student(id, name, age, info)']"
"\n###New Instruction:\n{}"
)
INSTRUCTION = """
You need to filter out the most relevant database table schema information (it may be a
single table or multiple tables) required to generate the SQL of the question query
from the given database schema information. First, I will show you an example of an
instruction followed by the correct schema response. Then, I will give you a new
instruction, and you should write the schema response that appropriately completes the
request.
### Example1 Instruction:
['job(id, name, age)', 'user(id, name, age)', 'student(id, name, age, info)']
### Example1 Input:
Find the age of student table
### Example1 Response:
['student(id, name, age, info)']
###New Instruction:
{}
"""
INPUT_PROMPT = "\n###New Input:\n{}\n###New Response:"
class SchemaLinking(BaseSchemaLinker):
"""SchemaLinking by LLM"""
"""SchemaLinking by LLM."""
def __init__(
self,
connection: RDBMSDatabase,
model_name: str,
llm: LLMClient,
top_k: int = 5,
connection: Optional[RDBMSDatabase] = None,
llm: Optional[LLMClient] = None,
model_name: Optional[str] = None,
vector_store_connector: Optional[VectorStoreConnector] = None,
**kwargs
):
"""
"""Create the schema linking instance.
Args:
connection (Optional[RDBMSDatabase]): RDBMSDatabase connection.
llm (Optional[LLMClient]): base llm
@@ -47,20 +58,21 @@ class SchemaLinking(BaseSchemaLinker):
self._vector_store_connector = vector_store_connector
def _schema_linking(self, query: str) -> List:
"""get all db schema info"""
"""Get all db schema info."""
table_summaries = _parse_db_summary(self._connection)
chunks = [Chunk(content=table_summary) for table_summary in table_summaries]
chunks_content = [chunk.content for chunk in chunks]
return chunks_content
def _schema_linking_with_vector_db(self, query: str) -> List:
def _schema_linking_with_vector_db(self, query: str) -> List[Chunk]:
queries = [query]
if not self._vector_store_connector:
raise ValueError("Vector store connector is not provided.")
candidates = [
self._vector_store_connector.similar_search(query, self._top_k)
for query in queries
]
candidates = reduce(lambda x, y: x + y, candidates)
return candidates
return cast(List[Chunk], reduce(lambda x, y: x + y, candidates))
async def _schema_linking_with_llm(self, query: str) -> List:
chunks_content = self.schema_linking(query)