feat: APIServer supports embeddings (#1256)

This commit is contained in:
Fangyin Cheng
2024-03-05 20:21:37 +08:00
committed by GitHub
parent 5f3ee35804
commit 74ec8e52cd
9 changed files with 414 additions and 40 deletions

View File

@@ -1,7 +1,7 @@
import asyncio
import os
from dbgpt.configs.model_config import MODEL_PATH, PILOT_PATH
from dbgpt.configs.model_config import MODEL_PATH, PILOT_PATH, ROOT_PATH
from dbgpt.rag.chunk_manager import ChunkParameters
from dbgpt.rag.embedding.embedding_factory import DefaultEmbeddingFactory
from dbgpt.rag.knowledge.factory import KnowledgeFactory
@@ -37,7 +37,7 @@ def _create_vector_connector():
async def main():
file_path = "docs/docs/awel.md"
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
knowledge = KnowledgeFactory.from_file_path(file_path)
vector_connector = _create_vector_connector()
chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")

View File

@@ -0,0 +1,87 @@
"""A RAG example using the OpenAPIEmbeddings.
Example:
Test with `OpenAI embeddings
<https://platform.openai.com/docs/api-reference/embeddings/create>`_.
.. code-block:: shell
export API_SERVER_BASE_URL=${OPENAI_API_BASE:-"https://api.openai.com/v1"}
export API_SERVER_API_KEY="${OPENAI_API_KEY}"
export API_SERVER_EMBEDDINGS_MODEL="text-embedding-ada-002"
python examples/rag/rag_embedding_api_example.py
Test with DB-GPT `API Server
<https://docs.dbgpt.site/docs/installation/advanced_usage/OpenAI_SDK_call#start-apiserver>`_.
.. code-block:: shell
export API_SERVER_BASE_URL="http://localhost:8100/api/v1"
export API_SERVER_API_KEY="your_api_key"
export API_SERVER_EMBEDDINGS_MODEL="text2vec"
python examples/rag/rag_embedding_api_example.py
"""
import asyncio
import os
from typing import Optional
from dbgpt.configs.model_config import PILOT_PATH, ROOT_PATH
from dbgpt.rag.chunk_manager import ChunkParameters
from dbgpt.rag.embedding import OpenAPIEmbeddings
from dbgpt.rag.knowledge.factory import KnowledgeFactory
from dbgpt.serve.rag.assembler.embedding import EmbeddingAssembler
from dbgpt.storage.vector_store.chroma_store import ChromaVectorConfig
from dbgpt.storage.vector_store.connector import VectorStoreConnector
def _create_embeddings(
api_url: str = None, api_key: Optional[str] = None, model_name: Optional[str] = None
) -> OpenAPIEmbeddings:
if not api_url:
api_server_base_url = os.getenv(
"API_SERVER_BASE_URL", "http://localhost:8100/api/v1/"
)
api_url = f"{api_server_base_url}/embeddings"
if not api_key:
api_key = os.getenv("API_SERVER_API_KEY")
if not model_name:
model_name = os.getenv("API_SERVER_EMBEDDINGS_MODEL", "text2vec")
return OpenAPIEmbeddings(api_url=api_url, api_key=api_key, model_name=model_name)
def _create_vector_connector():
"""Create vector connector."""
return VectorStoreConnector.from_default(
"Chroma",
vector_store_config=ChromaVectorConfig(
name="example_embedding_api_vector_store_name",
persist_path=os.path.join(PILOT_PATH, "data"),
),
embedding_fn=_create_embeddings(),
)
async def main():
file_path = os.path.join(ROOT_PATH, "docs/docs/awel/awel.md")
knowledge = KnowledgeFactory.from_file_path(file_path)
vector_connector = _create_vector_connector()
chunk_parameters = ChunkParameters(chunk_strategy="CHUNK_BY_SIZE")
# get embedding assembler
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
vector_store_connector=vector_connector,
)
assembler.persist()
# get embeddings retriever
retriever = assembler.as_retriever(3)
chunks = await retriever.aretrieve_with_scores("what is awel talk about", 0.3)
print(f"embedding rag example results:{chunks}")
if __name__ == "__main__":
asyncio.run(main())