mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-17 15:58:25 +00:00
Merge branch 'dev' of https://github.com/csunny/DB-GPT into dev
This commit is contained in:
commit
759798948b
@ -34,6 +34,7 @@ LLM_MODEL_CONFIG = {
|
||||
"chatglm-6b-int4": os.path.join(MODEL_PATH, "chatglm-6b-int4"),
|
||||
"chatglm-6b": os.path.join(MODEL_PATH, "chatglm-6b"),
|
||||
"text2vec-base": os.path.join(MODEL_PATH, "text2vec-base-chinese"),
|
||||
"guanaco-33b-merged": os.path.join(MODEL_PATH, "guanaco-33b-merged"
|
||||
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2"),
|
||||
"guanaco-33b-merged": os.path.join(MODEL_PATH, "guanaco-33b-merged"),
|
||||
"proxyllm": "proxyllm",
|
||||
|
@ -82,6 +82,21 @@ class ChatGLMAdapater(BaseLLMAdaper):
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
class GuanacoAdapter(BaseLLMAdaper):
|
||||
"""TODO Support guanaco"""
|
||||
|
||||
def match(self, model_path: str):
|
||||
return "guanaco" in model_path
|
||||
|
||||
def loader(self, model_path: str, from_pretrained_kwargs: dict):
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, load_in_4bit=True, device_map={"": 0}, **from_pretrained_kwargs
|
||||
)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
|
||||
class GuanacoAdapter(BaseLLMAdaper):
|
||||
"""TODO Support guanaco"""
|
||||
|
55
pilot/model/guanaco_stream_llm.py
Normal file
55
pilot/model/guanaco_stream_llm.py
Normal file
@ -0,0 +1,55 @@
|
||||
import torch
|
||||
from threading import Thread
|
||||
from transformers import TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria
|
||||
|
||||
|
||||
|
||||
def guanaco_stream_generate_output(model, tokenizer, params, device, context_len=2048):
|
||||
"""Fork from: https://github.com/KohakuBlueleaf/guanaco-lora/blob/main/generate.py"""
|
||||
tokenizer.bos_token_id = 1
|
||||
print(params)
|
||||
stop = params.get("stop", "###")
|
||||
prompt = params["prompt"]
|
||||
query = prompt
|
||||
print("Query Message: ", query)
|
||||
|
||||
input_ids = tokenizer(query, return_tensors="pt").input_ids
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
streamer = TextIteratorStreamer(
|
||||
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
||||
)
|
||||
|
||||
tokenizer.bos_token_id = 1
|
||||
stop_token_ids = [0]
|
||||
|
||||
class StopOnTokens(StoppingCriteria):
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
||||
) -> bool:
|
||||
for stop_id in stop_token_ids:
|
||||
if input_ids[0][-1] == stop_id:
|
||||
return True
|
||||
return False
|
||||
|
||||
stop = StopOnTokens()
|
||||
|
||||
generate_kwargs = dict(
|
||||
input_ids=input_ids,
|
||||
max_new_tokens=512,
|
||||
temperature=1.0,
|
||||
do_sample=True,
|
||||
top_k=1,
|
||||
streamer=streamer,
|
||||
repetition_penalty=1.7,
|
||||
stopping_criteria=StoppingCriteriaList([stop]),
|
||||
)
|
||||
|
||||
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
||||
t.start()
|
||||
|
||||
out = ""
|
||||
for new_text in streamer:
|
||||
out += new_text
|
||||
yield new_text
|
||||
return out
|
@ -59,6 +59,16 @@ class ChatGLMChatAdapter(BaseChatAdpter):
|
||||
|
||||
return chatglm_generate_stream
|
||||
|
||||
class GuanacoChatAdapter(BaseChatAdpter):
|
||||
"""Model chat adapter for Guanaco"""
|
||||
|
||||
def match(self, model_path: str):
|
||||
return "guanaco" in model_path
|
||||
|
||||
def get_generate_stream_func(self):
|
||||
from pilot.model.llm_out.guanaco_stream_llm import guanaco_stream_generate_output
|
||||
|
||||
return guanaco_generate_output
|
||||
|
||||
class CodeT5ChatAdapter(BaseChatAdpter):
|
||||
|
||||
@ -110,6 +120,7 @@ register_llm_model_chat_adapter(VicunaChatAdapter)
|
||||
register_llm_model_chat_adapter(ChatGLMChatAdapter)
|
||||
register_llm_model_chat_adapter(GuanacoChatAdapter)
|
||||
|
||||
|
||||
# Proxy model for test and develop, it's cheap for us now.
|
||||
register_llm_model_chat_adapter(ProxyllmChatAdapter)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user