feat(GraphRAG): enhance GraphRAG by graph community summary (#1801)

Co-authored-by: Florian <fanzhidongyzby@163.com>
Co-authored-by: KingSkyLi <15566300566@163.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: Fangyin Cheng <staneyffer@gmail.com>
Co-authored-by: yvonneyx <zhuyuxin0627@gmail.com>
This commit is contained in:
M1n9X
2024-08-30 21:59:44 +08:00
committed by GitHub
parent 471689ba20
commit 759f7d99cc
59 changed files with 29316 additions and 411 deletions

View File

@@ -0,0 +1,373 @@
"""Define the CommunitySummaryKnowledgeGraph."""
import logging
import os
from typing import List, Optional
from dbgpt._private.pydantic import ConfigDict, Field
from dbgpt.core import Chunk
from dbgpt.rag.transformer.community_summarizer import CommunitySummarizer
from dbgpt.rag.transformer.graph_extractor import GraphExtractor
from dbgpt.storage.knowledge_graph.community.community_store import CommunityStore
from dbgpt.storage.knowledge_graph.community.factory import CommunityStoreAdapterFactory
from dbgpt.storage.knowledge_graph.knowledge_graph import (
BuiltinKnowledgeGraph,
BuiltinKnowledgeGraphConfig,
)
from dbgpt.storage.vector_store.base import VectorStoreConfig
from dbgpt.storage.vector_store.factory import VectorStoreFactory
from dbgpt.storage.vector_store.filters import MetadataFilters
logger = logging.getLogger(__name__)
class CommunitySummaryKnowledgeGraphConfig(BuiltinKnowledgeGraphConfig):
"""Community summary knowledge graph config."""
model_config = ConfigDict(arbitrary_types_allowed=True)
vector_store_type: str = Field(
default="Chroma", description="The type of vector store."
)
user: Optional[str] = Field(
default=None,
description="The user of vector store, if not set, will use the default user.",
)
password: Optional[str] = Field(
default=None,
description=(
"The password of vector store, if not set, will use the default password."
),
)
extract_topk: int = Field(
default=5,
description="Topk of knowledge graph extract",
)
extract_score_threshold: float = Field(
default=0.3,
description="Recall score of knowledge graph extract",
)
community_topk: int = Field(
default=50,
description="Topk of community search in knowledge graph",
)
community_score_threshold: float = Field(
default=0.0,
description="Recall score of community search in knowledge graph",
)
class CommunitySummaryKnowledgeGraph(BuiltinKnowledgeGraph):
"""Community summary knowledge graph class."""
def __init__(self, config: CommunitySummaryKnowledgeGraphConfig):
"""Initialize community summary knowledge graph class."""
super().__init__(config)
self._config = config
self._vector_store_type = os.getenv(
"VECTOR_STORE_TYPE", config.vector_store_type
)
self._extract_topk = int(
os.getenv("KNOWLEDGE_GRAPH_EXTRACT_SEARCH_TOP_SIZE", config.extract_topk)
)
self._extract_score_threshold = float(
os.getenv(
"KNOWLEDGE_GRAPH_EXTRACT_SEARCH_RECALL_SCORE",
config.extract_score_threshold,
)
)
self._community_topk = int(
os.getenv(
"KNOWLEDGE_GRAPH_COMMUNITY_SEARCH_TOP_SIZE", config.community_topk
)
)
self._community_score_threshold = float(
os.getenv(
"KNOWLEDGE_GRAPH_COMMUNITY_SEARCH_RECALL_SCORE",
config.community_score_threshold,
)
)
def extractor_configure(name: str, cfg: VectorStoreConfig):
cfg.name = name
cfg.embedding_fn = config.embedding_fn
cfg.max_chunks_once_load = config.max_chunks_once_load
cfg.max_threads = config.max_threads
cfg.user = config.user
cfg.password = config.password
cfg.topk = self._extract_topk
cfg.score_threshold = self._extract_score_threshold
self._graph_extractor = GraphExtractor(
self._llm_client,
self._model_name,
VectorStoreFactory.create(
self._vector_store_type,
config.name + "_CHUNK_HISTORY",
extractor_configure,
),
)
def community_store_configure(name: str, cfg: VectorStoreConfig):
cfg.name = name
cfg.embedding_fn = config.embedding_fn
cfg.max_chunks_once_load = config.max_chunks_once_load
cfg.max_threads = config.max_threads
cfg.user = config.user
cfg.password = config.password
cfg.topk = self._community_topk
cfg.score_threshold = self._community_score_threshold
self._community_store = CommunityStore(
CommunityStoreAdapterFactory.create(self._graph_store),
CommunitySummarizer(self._llm_client, self._model_name),
VectorStoreFactory.create(
self._vector_store_type,
config.name + "_COMMUNITY_SUMMARY",
community_store_configure,
),
)
def get_config(self) -> BuiltinKnowledgeGraphConfig:
"""Get the knowledge graph config."""
return self._config
async def aload_document(self, chunks: List[Chunk]) -> List[str]:
"""Extract and persist graph."""
# todo add doc node
for chunk in chunks:
# todo add chunk node
# todo add relation doc-chunk
# extract graphs and save
graphs = await self._graph_extractor.extract(chunk.content)
for graph in graphs:
self._graph_store.insert_graph(graph)
# build communities and save
await self._community_store.build_communities()
return [chunk.chunk_id for chunk in chunks]
async def asimilar_search_with_scores(
self,
text,
topk,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
"""Retrieve relevant community summaries."""
# global search: retrieve relevant community summaries
communities = await self._community_store.search_communities(text)
summaries = [
f"Section {i + 1}:\n{community.summary}"
for i, community in enumerate(communities)
]
context = "\n".join(summaries) if summaries else ""
# local search: extract keywords and explore subgraph
keywords = await self._keyword_extractor.extract(text)
subgraph = self._graph_store.explore(keywords, limit=topk).format()
logger.info(f"Search subgraph from {len(keywords)} keywords")
if not summaries and not subgraph:
return []
# merge search results into context
content = HYBRID_SEARCH_PT_CN.format(context=context, graph=subgraph)
return [Chunk(content=content)]
def truncate(self) -> List[str]:
"""Truncate knowledge graph."""
logger.info("Truncate community store")
self._community_store.truncate()
logger.info("Truncate keyword extractor")
self._keyword_extractor.truncate()
logger.info("Truncate triplet extractor")
self._graph_extractor.truncate()
return [self._config.name]
def delete_vector_name(self, index_name: str):
"""Delete knowledge graph."""
logger.info("Drop community store")
self._community_store.drop()
logger.info("Drop keyword extractor")
self._keyword_extractor.drop()
logger.info("Drop triplet extractor")
self._graph_extractor.drop()
HYBRID_SEARCH_PT_CN = (
"## 角色\n"
"你非常擅长结合提示词模板提供的[上下文]信息与[知识图谱]信息,"
"准确恰当地回答用户的问题,并保证不会输出与上下文和知识图谱无关的信息。"
"\n"
"## 技能\n"
"### 技能 1: 上下文理解\n"
"- 准确地理解[上下文]提供的信息,上下文信息可能被拆分为多个章节。\n"
"- 上下文的每个章节内容都会以[Section]开始,并按需进行了编号。\n"
"- 上下文信息提供了与用户问题相关度最高的总结性描述,请合理使用它们。"
"### 技能 2: 知识图谱理解\n"
"- 准确地识别[知识图谱]中提供的[Entities:]章节中的实体信息"
"和[Relationships:]章节中的关系信息,实体和关系信息的一般格式为:\n"
"```"
"* 实体信息格式:\n"
"- (实体名)\n"
"- (实体名:实体描述)\n"
"- (实体名:实体属性表)\n"
"- (文本块ID:文档块内容)\n"
"- (目录ID:目录名)\n"
"- (文档ID:文档名称)\n"
"\n"
"* 关系信息的格式:\n"
"- (来源实体名)-[关系名]->(目标实体名)\n"
"- (来源实体名)-[关系名:关系描述]->(目标实体名)\n"
"- (来源实体名)-[关系名:关系属性表]->(目标实体名)\n"
"- (文本块实体)-[包含]->(实体名)\n"
"- (目录ID)-[包含]->(文本块实体)\n"
"- (目录ID)-[包含]->(子目录ID)\n"
"- (文档ID)-[包含]->(文本块实体)\n"
"- (文档ID)-[包含]->(目录ID)\n"
"```"
"- 正确地将关系信息中的实体名/ID与实体信息关联还原出图结构。"
"- 将图结构所表达的信息作为用户提问的明细上下文,辅助生成更好的答案。\n"
"\n"
"## 约束条件\n"
"- 不要在答案中描述你的思考过程,直接给出用户问题的答案,不要生成无关信息。\n"
"- 若[知识图谱]没有提供信息,此时应根据[上下文]提供的信息回答问题。"
"- 确保以第三人称书写,从客观角度结合[上下文]和[知识图谱]表达的信息回答问题。\n"
"- 若提供的信息相互矛盾,请解决矛盾并提供一个单一、连贯的描述。\n"
"- 避免使用停用词和过于常见的词汇。\n"
"\n"
"## 参考案例\n"
"```\n"
"[上下文]:\n"
"Section 1:\n"
"菲尔・贾伯的大儿子叫雅各布・贾伯。\n"
"Section 2:\n"
"菲尔・贾伯的小儿子叫比尔・贾伯。\n"
"[知识图谱]:\n"
"Entities:\n"
"(菲尔・贾伯#菲尔兹咖啡创始人)\n"
"(菲尔兹咖啡#加利福尼亚州伯克利创立的咖啡品牌)\n"
"(雅各布・贾伯#菲尔・贾伯的儿子)\n"
"(美国多地#菲尔兹咖啡的扩展地区)\n"
"\n"
"Relationships:\n"
"(菲尔・贾伯#创建#菲尔兹咖啡#1978年在加利福尼亚州伯克利创立)\n"
"(菲尔兹咖啡#位于#加利福尼亚州伯克利#菲尔兹咖啡的创立地点)\n"
"(菲尔・贾伯#拥有#雅各布・贾伯#菲尔・贾伯的儿子)\n"
"(雅各布・贾伯#担任#首席执行官#在2005年成为菲尔兹咖啡的首席执行官)\n"
"(菲尔兹咖啡#扩展至#美国多地#菲尔兹咖啡的扩展范围)\n"
"```\n"
"\n"
"----\n"
"\n"
"接下来的[上下文]和[知识图谱]的信息,可以帮助你回答更好地用户的问题。\n"
"\n"
"[上下文]:\n"
"{context}\n"
"\n"
"[知识图谱]:\n"
"{graph}\n"
"\n"
)
HYBRID_SEARCH_PT_EN = (
"## Role\n"
"You excel at combining the information provided in the [Context] with "
"information from the [KnowledgeGraph] to accurately and appropriately "
"answer user questions, ensuring that you do not output information "
"unrelated to the context and knowledge graph.\n"
"\n"
"## Skills\n"
"### Skill 1: Context Understanding\n"
"- Accurately understand the information provided in the [Context], "
"which may be divided into several sections.\n"
"- Each section in the context will start with [Section] "
"and may be numbered as needed.\n"
"- The context provides a summary description most relevant to the users "
"question, and it should be used wisely."
"### Skill 2: Knowledge Graph Understanding\n"
"- Accurately identify entity information in the [Entities:] section and "
"relationship information in the [Relationships:] section "
"of the [KnowledgeGraph]. The general format for entity "
"and relationship information is:\n"
"```"
"* Entity Information Format:\n"
"- (entity_name)\n"
"- (entity_name: entity_description)\n"
"- (entity_name: entity_property_map)\n"
"- (chunk_id: chunk_content)\n"
"- (catalog_id: catalog_name)\n"
"- (document_id: document_name)\n"
"\n"
"* Relationship Information Format:\n"
"- (source_entity_name)-[relationship_name]->(target_entity_name)\n"
"- (source_entity_name)-[relationship_name: relationship_description]->"
"(target_entity_name)\n"
"- (source_entity_name)-[relationship_name: relationship_property_map]->"
"(target_entity_name)\n"
"- (chunk_id)-[Contains]->(entity_name)\n"
"- (catalog_id)-[Contains]->(chunk_id)\n"
"- (catalog_id)-[Contains]->(sub_catalog_id)\n"
"- (document_id)-[Contains]->(chunk_id)\n"
"- (document_id)-[Contains]->(catalog_id)\n"
"```"
"- Correctly associate entity names/IDs in the relationship information "
"with entity information to restore the graph structure."
"- Use the information expressed by the graph structure as detailed "
"context for the user's query to assist in generating better answers.\n"
"\n"
"## Constraints\n"
"- Don't describe your thought process in the answer, provide the answer "
"to the user's question directly without generating irrelevant information."
"- If the [KnowledgeGraph] does not provide information, you should answer "
"the question based on the information provided in the [Context]."
"- Ensure to write in the third person, responding to questions from "
"an objective perspective based on the information combined from the "
"[Context] and the [KnowledgeGraph].\n"
"- If the provided information is contradictory, resolve the "
"contradictions and provide a single, coherent description.\n"
"- Avoid using stop words and overly common vocabulary.\n"
"\n"
"## Reference Example\n"
"```\n"
"[Context]:\n"
"Section 1:\n"
"Phil Schiller's eldest son is Jacob Schiller.\n"
"Section 2:\n"
"Phil Schiller's youngest son is Bill Schiller.\n"
"[KnowledgeGraph]:\n"
"Entities:\n"
"(Phil Jaber#Founder of Philz Coffee)\n"
"(Philz Coffee#Coffee brand founded in Berkeley, California)\n"
"(Jacob Jaber#Son of Phil Jaber)\n"
"(Multiple locations in the USA#Expansion regions of Philz Coffee)\n"
"\n"
"Relationships:\n"
"(Phil Jaber#Created#Philz Coffee"
"#Founded in Berkeley, California in 1978)\n"
"(Philz Coffee#Located in#Berkeley, California"
"#Founding location of Philz Coffee)\n"
"(Phil Jaber#Has#Jacob Jaber#Son of Phil Jaber)\n"
"(Jacob Jaber#Serves as#CEO#Became CEO of Philz Coffee in 2005)\n"
"(Philz Coffee#Expanded to#Multiple locations in the USA"
"#Expansion regions of Philz Coffee)\n"
"```\n"
"\n"
"----\n"
"\n"
"The following information from the [Context] and [KnowledgeGraph] can "
"help you better answer user questions.\n"
"\n"
"[Context]:\n"
"{context}\n"
"\n"
"[KnowledgeGraph]:\n"
"{graph}\n"
"\n"
)