docs: Add 0.7.0 release blog (#2515)
@ -45,7 +45,7 @@
|
|||||||
🚀 **データ3.0時代には、モデルとデータベースを基盤として、企業や開発者がより少ないコードで独自のアプリケーションを構築できます。**
|
🚀 **データ3.0時代には、モデルとデータベースを基盤として、企業や開発者がより少ないコードで独自のアプリケーションを構築できます。**
|
||||||
|
|
||||||
### AIネイティブデータアプリ
|
### AIネイティブデータアプリ
|
||||||
- 🔥🔥🔥 [V0.7.0 リリース | 重要なアップグレードのセット](https://docs.dbgpt.cn/docs/changelog/Released_V0.6.0)
|
- 🔥🔥🔥 [V0.7.0 リリース | 重要なアップグレードのセット](http://docs.dbgpt.cn/blog/db-gpt-v070-release)
|
||||||
- [サポート MCP Protocol](https://github.com/eosphoros-ai/DB-GPT/pull/2497)
|
- [サポート MCP Protocol](https://github.com/eosphoros-ai/DB-GPT/pull/2497)
|
||||||
- [サポート DeepSeek R1](https://github.com/deepseek-ai/DeepSeek-R1)
|
- [サポート DeepSeek R1](https://github.com/deepseek-ai/DeepSeek-R1)
|
||||||
- [サポート QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)
|
- [サポート QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)
|
||||||
|
@ -50,7 +50,7 @@ The purpose is to build infrastructure in the field of large models, through the
|
|||||||
|
|
||||||
### AI-Native Data App
|
### AI-Native Data App
|
||||||
---
|
---
|
||||||
- 🔥🔥🔥 [Released V0.7.0 | A set of significant upgrades](https://docs.dbgpt.cn/docs/changelog/Released_V0.6.0)
|
- 🔥🔥🔥 [Released V0.7.0 | A set of significant upgrades](http://docs.dbgpt.cn/blog/db-gpt-v070-release)
|
||||||
- [Suppport MCP Protocol](https://github.com/eosphoros-ai/DB-GPT/pull/2497)
|
- [Suppport MCP Protocol](https://github.com/eosphoros-ai/DB-GPT/pull/2497)
|
||||||
- [Support DeepSeek R1](https://github.com/deepseek-ai/DeepSeek-R1)
|
- [Support DeepSeek R1](https://github.com/deepseek-ai/DeepSeek-R1)
|
||||||
- [Support QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)
|
- [Support QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)
|
||||||
|
442
docs/blog/2025-03-24-dbgpt-v0.7.0-release.md
Normal file
@ -0,0 +1,442 @@
|
|||||||
|
---
|
||||||
|
slug: db-gpt-v070-release
|
||||||
|
tags: [DeepSeek, LLM, MCP]
|
||||||
|
---
|
||||||
|
|
||||||
|
# DB-GPT V0.7.0, MCP + DeepSeek R1: Bringing More Possibilities to LLM Applications
|
||||||
|
|
||||||
|
**DB-GPT V0.7.0 Release: MCP Protocol Support, DeepSeek R1 Model Integration, Complete Architecture Upgrade, GraphRAG Retrieval Chain Enhancement, and More..**
|
||||||
|
|
||||||
|
`DB-GPT` is an open-source AI Native Data App Development framework with AWEL and Agents. In version `V0.7.0`, we have reorganized the `DB-GPT` module packages, splitting the original modules, restructuring the entire framework configuration system, and providing a clearer, more flexible, and more extensible management and development capability for building AI native data applications around large models.
|
||||||
|
|
||||||
|
## V0.7.0 version mainly adds and enhances the following core features
|
||||||
|
|
||||||
|
🍀 **Support for** `MCP(Model Context Protocol)` **protocol.**
|
||||||
|
|
||||||
|
🍀 **Integrated** `DeepSeek R1`, `QWQ` **inference models, all original** `DB-GPT` **Chat scenarios now cover deep thinking capabilities.**
|
||||||
|
|
||||||
|
🍀 `GraphRAG` **retrieval chain enhancement: support for "Vector" and "Intent Recognition+Text2GQL" graph retrievers.**
|
||||||
|
|
||||||
|
🍀 `DB-GPT` **module package restructuring, original** `dbgpt` **package split into** `dbgpt-core`, `dbgpt-ext`, `dbgpt-serve`, `dbgpt-client`, `dbgpt-acclerator`, `dbgpt-app`.
|
||||||
|
|
||||||
|
🍀 **Reconstructed** `DB-GPT` **configuration system, configuration files changed to "**`.toml`**" format, abolishing the original** `.env` **configuration logic.**
|
||||||
|
|
||||||
|
|
||||||
|
## ✨New Features
|
||||||
|
|
||||||
|
|
||||||
|
### 1. **Support for** `MCP(Model Context Protocol)` **protocol**
|
||||||
|
|
||||||
|
Usage instructions:
|
||||||
|
|
||||||
|
a. Run the MCP SSE Server gateway:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npx -y supergateway --stdio "uvx mcp-server-fetch"
|
||||||
|
```
|
||||||
|
|
||||||
|
Here we are running the web scraping `mcp-server-fetch`
|
||||||
|
|
||||||
|
|
||||||
|
b. Create a `Multi-agent`+ `Auto-Planning`+ `MCP` web page scraping and summarization APP.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/mcp_create_app.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
c. Configure the APP, select the `ToolExpert` and `Summarizer` agents, and add a resource of type `tool(mcp(sse))` to `ToolExpert`, where `mcp_servers` should be filled with the service address started in step a (default is: `http://127.0.0.1:8000/sse`), then save the application.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/mcp_config_app.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
d. Select the newly created `MCP Web Fetch` APP to chat, provide a webpage for the APP to summarize:
|
||||||
|
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/mcp_chat_app.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
The example input question is: `What does this webpage talk about https://www.cnblogs.com/fnng/p/18744210"`
|
||||||
|
|
||||||
|
|
||||||
|
### 2. Integrated DeepSeek R1 inference model
|
||||||
|
|
||||||
|
**And all Chat scenarios in original DB-GPT now have deep thinking capabilities.**
|
||||||
|
|
||||||
|
For quick usage reference: [http://docs.dbgpt.cn/docs/next/quickstart](http://docs.dbgpt.cn/docs/next/quickstart)
|
||||||
|
|
||||||
|
Data analysis scenario:
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/data_analysis.png'} width="800px" />
|
||||||
|
</p>
|
||||||
|
|
||||||
|
Knowledge base scenario:
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/Knowledge_thinking.png'} width="800px" />
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### 3. `GraphRAG` **retrieval chain enhancement: support for "Vector" and "Intent Recognition+Text2GQL" graph retrievers.**
|
||||||
|
|
||||||
|
+ **"Vector" graph retriever**
|
||||||
|
|
||||||
|
During the knowledge graph construction process, vectors are added to all nodes and edges and indexes are established. When querying, the question is vectorized and through TuGraph-DB's built-in vector indexing capability, based on the HNSW algorithm, topk related nodes and edges are queried. Compared to keyword graph retrieval, it can identify more ambiguous questions.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/graphrag_1.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
Configuration example:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[rag.storage.graph]
|
||||||
|
type = "TuGraph"
|
||||||
|
host="127.0.0.1"
|
||||||
|
port=7687
|
||||||
|
username="admin"
|
||||||
|
password="73@TuGraph"
|
||||||
|
|
||||||
|
enable_summary="True"
|
||||||
|
triplet_graph_enabled="True"
|
||||||
|
document_graph_enabled="True"
|
||||||
|
|
||||||
|
# Vector graph retrieval configuration items
|
||||||
|
enable_similarity_search="True"
|
||||||
|
knowledge_graph_embedding_batch_size=20
|
||||||
|
similarity_search_topk=5
|
||||||
|
extract_score_threshold=0.7
|
||||||
|
```
|
||||||
|
|
||||||
|
+ **"Intent Recognition+Text2GQL" graph retriever**
|
||||||
|
|
||||||
|
The question is rewritten through the intent recognition module, extracting true intent and involved entities and relationships, and then translated using the Text2GQL model into GQL statements for direct querying. It can perform more precise graph queries and display corresponding query statements. In addition to calling large model API services, you can also use ollama to call local Text2GQL models.
|
||||||
|
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/graphrag_2.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
Configuration example:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[rag.storage.graph]
|
||||||
|
type = "TuGraph"
|
||||||
|
host="127.0.0.1"
|
||||||
|
port=7687
|
||||||
|
username="admin"
|
||||||
|
password="73@TuGraph"
|
||||||
|
|
||||||
|
enable_summary="True"
|
||||||
|
triplet_graph_enabled="True"
|
||||||
|
document_graph_enabled="True"
|
||||||
|
|
||||||
|
# Intent Recognition+Text2GQL graph retrieval configuration items
|
||||||
|
enable_text_search="True"
|
||||||
|
|
||||||
|
# Use Ollama to deploy independent text2gql model, enable the following configuration items
|
||||||
|
# text2gql_model_enabled="True"
|
||||||
|
# text2gql_model_name="tugraph/CodeLlama-7b-Cypher-hf:latest"
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. `DB-GPT` module package restructuring
|
||||||
|
|
||||||
|
Original `dbgpt` package split into `dbgpt-core`, `dbgpt-ext`, `dbgpt-serve`, `dbgpt-client`, `dbgpt-acclerator`, `dbgpt-app`
|
||||||
|
|
||||||
|
As dbgpt has gradually developed, the service modules have increased, making functional regression testing difficult and compatibility issues more frequent. Therefore, the original dbgpt content has been modularized:
|
||||||
|
|
||||||
|
+ **dbgpt-core**: Mainly responsible for core module interface definitions of dbgpt's awel, model, agent, rag, storage, datasource, etc., releasing Python SDK.
|
||||||
|
+ **dbgpt-ext**: Mainly responsible for implementing dbgpt extension content, including datasource extensions, vector-storage, graph-storage extensions, and model access extensions, making it easier for community developers to quickly use and extend new module content, releasing Python SDK.
|
||||||
|
+ **dbgpt-serve**: Mainly provides Restful interfaces for dbgpt's atomized services of each module, making it easy for community users to quickly integrate. No Python SDK is released at this time.
|
||||||
|
+ **dbgpt-app**: Mainly responsible for business scenario implementations such as `App`, `ChatData`, `ChatKnowledge`, `ChatExcel`, `Dashboard`, etc., with no Python SDK.
|
||||||
|
+ **dbgpt-client**: Provides a unified Python SDK client for integration.
|
||||||
|
+ **dbgpt-accelerator:** Model inference acceleration module, including compatibility and adaptation for different versions (different torch versions, etc.), platforms (Windows, MacOS, and Linux), hardware environments (CPU, CUDA, and ROCM), inference frameworks (vLLM, llama.cpp), quantization methods (AWQ, bitsandbytes, GPTQ), and other acceleration modules (accelerate, flash-attn), providing cross-platform, installable underlying environments on-demand for other DB-GPT modules.
|
||||||
|
|
||||||
|
|
||||||
|
### 5. Restructured DB-GPT configuration system
|
||||||
|
|
||||||
|
The new configuration files using `".toml"` format, abolishing the original `.env` configuration logic, each module can have its own configuration class, and automatically generate front-end configuration pages.
|
||||||
|
|
||||||
|
For quick usage reference: [http://docs.dbgpt.cn/docs/next/quickstart](http://docs.dbgpt.cn/docs/next/quickstart)
|
||||||
|
|
||||||
|
For all configurations reference: [http://docs.dbgpt.cn/docs/next/config-reference/app/config_chatdashboardconfig_2480d0](http://docs.dbgpt.cn/docs/next/config-reference/app/config_chatdashboardconfig_2480d0)
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[system]
|
||||||
|
# Load language from environment variable(It is set by the hook)
|
||||||
|
language = "${env:DBGPT_LANG:-zh}"
|
||||||
|
api_keys = []
|
||||||
|
encrypt_key = "your_secret_key"
|
||||||
|
|
||||||
|
# Server Configurations
|
||||||
|
[service.web]
|
||||||
|
host = "0.0.0.0"
|
||||||
|
port = 5670
|
||||||
|
|
||||||
|
[service.web.database]
|
||||||
|
type = "sqlite"
|
||||||
|
path = "pilot/meta_data/dbgpt.db"
|
||||||
|
[service.model.worker]
|
||||||
|
host = "127.0.0.1"
|
||||||
|
|
||||||
|
[rag.storage]
|
||||||
|
[rag.storage.vector]
|
||||||
|
type = "chroma"
|
||||||
|
persist_path = "pilot/data"
|
||||||
|
|
||||||
|
# Model Configurations
|
||||||
|
[models]
|
||||||
|
[[models.llms]]
|
||||||
|
name = "deepseek-reasoner"
|
||||||
|
# name = "deepseek-chat"
|
||||||
|
provider = "proxy/deepseek"
|
||||||
|
api_key = "your_deepseek_api_key"
|
||||||
|
```
|
||||||
|
|
||||||
|
### 6. **Support for S3, OSS storage**
|
||||||
|
|
||||||
|
DB-GPT unified storage extension OSS and S3 implementation, where the S3 implementation supports most cloud storage compatible with the S3 protocol. DB-GPT knowledge base original files, Chat Excel related intermediate files, AWEL Flow node parameter files, etc. all support cloud storage.
|
||||||
|
|
||||||
|
Configuration example:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[[serves]]
|
||||||
|
type = "file"
|
||||||
|
# Default backend for file server
|
||||||
|
default_backend = "s3"
|
||||||
|
|
||||||
|
[[serves.backends]]
|
||||||
|
type = "oss"
|
||||||
|
endpoint = "https://oss-cn-beijing.aliyuncs.com"
|
||||||
|
region = "oss-cn-beijing"
|
||||||
|
access_key_id = "${env:OSS_ACCESS_KEY_ID}"
|
||||||
|
access_key_secret = "${env:OSS_ACCESS_KEY_SECRET}"
|
||||||
|
fixed_bucket = "{your_bucket_name}"
|
||||||
|
|
||||||
|
[[serves.backends]]
|
||||||
|
# Use Tencent COS s3 compatible API as the file server
|
||||||
|
type = "s3"
|
||||||
|
endpoint = "https://cos.ap-beijing.myqcloud.com"
|
||||||
|
region = "ap-beijing"
|
||||||
|
access_key_id = "${env:COS_SECRETID}"
|
||||||
|
access_key_secret = "${env:COS_SECRETKEY}"
|
||||||
|
fixed_bucket = "{your_bucket_name}
|
||||||
|
```
|
||||||
|
|
||||||
|
For detailed configuration instructions, please refer to: [http://docs.dbgpt.cn/docs/next/config-reference/utils/config_s3storageconfig_f0cdc9](http://docs.dbgpt.cn/docs/next/config-reference/utils/config_s3storageconfig_f0cdc9)
|
||||||
|
|
||||||
|
### 7. **Production-level llama.cpp inference support**
|
||||||
|
|
||||||
|
Based on llama.cpp HTTP Server, supporting continuous batching, multi-user parallel inference, etc., llama.cpp inference moves towards production systems.
|
||||||
|
|
||||||
|
Configuration example:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
# Model Configurations
|
||||||
|
[models]
|
||||||
|
[[models.llms]]
|
||||||
|
name = "DeepSeek-R1-Distill-Qwen-1.5B"
|
||||||
|
provider = "llama.cpp.server"
|
||||||
|
# If not provided, the model will be downloaded from the Hugging Face model hub
|
||||||
|
# uncomment the following line to specify the model path in the local file system
|
||||||
|
# https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-1.5B-GGUF
|
||||||
|
# path = "the-model-path-in-the-local-file-system"
|
||||||
|
path = "models/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M.gguf
|
||||||
|
```
|
||||||
|
|
||||||
|
### 8. **Multi-model deployment persistence**
|
||||||
|
|
||||||
|
Currently, most models can be integrated on the DB-GPT page, with configuration information persistently saved and models automatically loaded when the service starts.
|
||||||
|
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/model_deploy.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
### 9. **LLM, Embedding, Reranker extension capability enhancement**
|
||||||
|
|
||||||
|
Optimized the model extension approach, requiring only a few lines of code to integrate new models.
|
||||||
|
|
||||||
|
### 10. **Native scenario support for conversation-round and token-based memory, with independent configuration support for each scenario**
|
||||||
|
|
||||||
|
Configuration example:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[app]
|
||||||
|
# Unified temperature configuration for all scenarios
|
||||||
|
temperature = 0.6
|
||||||
|
|
||||||
|
[[app.configs]]
|
||||||
|
name = "chat_excel"
|
||||||
|
# Use custom temperature configuration
|
||||||
|
temperature = 0.1
|
||||||
|
duckdb_extensions_dir = []
|
||||||
|
force_install = true
|
||||||
|
|
||||||
|
[[app.configs]]
|
||||||
|
name = "chat_normal"
|
||||||
|
memory = {type="token", max_token_limit=20000}
|
||||||
|
|
||||||
|
[[app.configs]]
|
||||||
|
name = "chat_with_db_qa"
|
||||||
|
schema_retrieve_top_k = 50
|
||||||
|
memory = {type="window", keep_start_rounds=0, keep_end_rounds=10}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 11. **Chat Excel, Chat Data & Chat DB and Chat Dashboard native scenario optimization**
|
||||||
|
|
||||||
|
+ Chat Data, Chat Dashboard support for streaming output.
|
||||||
|
+ Optimization of library table field knowledge processing and recall
|
||||||
|
+ Chat Excel optimization, supporting more complex table understanding and chart conversations, even small parameter-scale open-source LLMs can handle it well.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/chat_excel.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
### 12. **Front-end page support for LaTeX mathematical formula rendering**
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/chat_latex.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
### 13. **AWEL Flow support for simple conversation templates**
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/simple_awel.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
### 14. **Support for lightweight Docker images containing only proxy models (arm64 & amd64)**
|
||||||
|
|
||||||
|
One-click deployment command for DB-GPT:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker run -it --rm -e SILICONFLOW_API_KEY=${SILICONFLOW_API_KEY} \
|
||||||
|
-p 5670:5670 --name dbgpt eosphorosai/dbgpt-openai
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also use the build script to build your own image:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash docker/base/build_image.sh --install-mode openai
|
||||||
|
```
|
||||||
|
|
||||||
|
For details, see the documentation: [http://docs.dbgpt.cn/docs/next/installation/docker-build-guide](http://docs.dbgpt.cn/docs/next/installation/docker-build-guide)
|
||||||
|
|
||||||
|
### 15. **DB-GPT API compatible with OpenAI SDK**
|
||||||
|
|
||||||
|
```python
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
DBGPT_API_KEY = "dbgpt"
|
||||||
|
|
||||||
|
client = OpenAI(
|
||||||
|
api_key=DBGPT_API_KEY,
|
||||||
|
base_url="http://localhost:5670/api/v2",
|
||||||
|
)
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Hello, how are you?",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
has_thinking = False
|
||||||
|
reasoning_content = ""
|
||||||
|
for chunk in client.chat.completions.create(
|
||||||
|
model="deepseek-chat",
|
||||||
|
messages=messages,
|
||||||
|
extra_body={
|
||||||
|
"chat_mode": "chat_normal",
|
||||||
|
},
|
||||||
|
stream=True,
|
||||||
|
max_tokens=4096,
|
||||||
|
):
|
||||||
|
delta_content = chunk.choices[0].delta.content
|
||||||
|
if hasattr(chunk.choices[0].delta, "reasoning_content"):
|
||||||
|
reasoning_content = chunk.choices[0].delta.reasoning_content
|
||||||
|
if reasoning_content:
|
||||||
|
if not has_thinking:
|
||||||
|
print("<thinking>", flush=True)
|
||||||
|
print(reasoning_content, end="", flush=True)
|
||||||
|
has_thinking = True
|
||||||
|
if delta_content:
|
||||||
|
if has_thinking:
|
||||||
|
print("</thinking>", flush=True)
|
||||||
|
print(delta_content, end="", flush=True)
|
||||||
|
has_thinking = False
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
### 16. **Data source extension capability enhancement**
|
||||||
|
|
||||||
|
After the backend supports new data sources, the frontend can automatically identify and dynamically configure them.
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/datasource.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
### 17. **Agent resource support for dynamic parameter configuration**
|
||||||
|
|
||||||
|
Frontend automatically identifies resource configuration parameters while remaining compatible with old configurations.
|
||||||
|
|
||||||
|
### 18. **ReAct Agent support, Agent tool calling capability enhancement**
|
||||||
|
### 19. **IndexStore extension capability enhancement**
|
||||||
|
|
||||||
|
IndexStore configuration restructuring, new storage implementations automatically scanned and discovered
|
||||||
|
|
||||||
|
### 20. **AWEL flow compatibility enhancement**
|
||||||
|
|
||||||
|
Cross-version compatibility for AWEL flow based on multi-version metadata.
|
||||||
|
|
||||||
|
## 🐞 Bug Fixes
|
||||||
|
Chroma support for Chinese knowledge base spaces, AWEL Flow issue fixes, fixed multi-platform Lyric installation error issues and local embedding model error issues, along with **40+** other bugs.
|
||||||
|
|
||||||
|
## 🛠️Others
|
||||||
|
Support for Ruff code formatting, multi-version documentation building, unit test fixes, and **20+** other issue fixes or feature enhancements.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
**Upgrade Guide:**
|
||||||
|
|
||||||
|
### 1. Metadata database upgrade
|
||||||
|
|
||||||
|
For SQLite upgrades, table structures will be automatically upgraded by default. For MySQL upgrades, DDL needs to be executed manually. The `assets/schema/dbgpt.sql` file contains the complete DDL for the current version. Specific version change DDLs can be found in the `assets/schema/upgrade` directory. For example, if you are upgrading from `v0.6.3` to `v0.7.0`, you can execute the following DDL:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
mysql -h127.0.0.1 -uroot -p{your_password} < ./assets/schema/upgrade/v0_7_0/upgrade_to_v0.7.0.sql
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Vector database upgrade
|
||||||
|
|
||||||
|
Due to underlying changes in Chroma storage in v0.7.0, version 0.7.0 does not support reading content from older versions. Please re-import knowledge bases and refresh data sources. Other vector storage solutions are not affected.
|
||||||
|
|
||||||
|
## ✨Official Documentation
|
||||||
|
**English**
|
||||||
|
|
||||||
|
[Overview | DB-GPT](http://docs.dbgpt.site/docs/overview)
|
||||||
|
|
||||||
|
**Chinese**
|
||||||
|
|
||||||
|
[概览](https://www.yuque.com/eosphoros/dbgpt-docs/bex30nsv60ru0fmx)
|
||||||
|
|
||||||
|
|
||||||
|
## ✨Acknowledgements
|
||||||
|
Thanks to all contributors for making this release possible!
|
||||||
|
|
||||||
|
**283569391@qq.com, @15089677014, @Aries-ckt, @FOkvj, @Jant1L, @SonglinLyu, @TenYearOldJAVA, @Weaxs, @cinjoseph, @csunny, @damonqin, @dusx1981, @fangyinc, @geebytes, @haawha, @utopia2077, @vnicers, @xuxl2024, @yhjun1026, @yunfeng1993, @yyhhyyyyyy and tam**
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src={'/img/v070/contributors.png'} width="800px"/>
|
||||||
|
</p>
|
||||||
|
|
||||||
|
This version took nearly three months to develop and has been merged to the main branch for over a month. Hundreds of users participated in testing version 0.7.0, with GitHub receiving hundreds of issues feedback. Some users directly submitted PR fixes. The DB-GPT community sincerely thanks every user and contributor who participated in version 0.7.0!
|
||||||
|
|
||||||
|
## ✨Appendix
|
||||||
|
+ [Quick Start](http://docs.dbgpt.cn/docs/next/quickstart)
|
||||||
|
+ [Docker Quick Deployment](http://docs.dbgpt.cn/docs/next/installation/docker)
|
BIN
docs/static/img/v070/Knowledge_thinking.png
vendored
Normal file
After Width: | Height: | Size: 603 KiB |
BIN
docs/static/img/v070/chat_excel.png
vendored
Normal file
After Width: | Height: | Size: 118 KiB |
BIN
docs/static/img/v070/chat_latex.png
vendored
Normal file
After Width: | Height: | Size: 157 KiB |
BIN
docs/static/img/v070/contributors.png
vendored
Normal file
After Width: | Height: | Size: 129 KiB |
BIN
docs/static/img/v070/data_analysis.png
vendored
Normal file
After Width: | Height: | Size: 769 KiB |
BIN
docs/static/img/v070/datasource.png
vendored
Normal file
After Width: | Height: | Size: 190 KiB |
BIN
docs/static/img/v070/graphrag_1.png
vendored
Normal file
After Width: | Height: | Size: 324 KiB |
BIN
docs/static/img/v070/graphrag_2.png
vendored
Normal file
After Width: | Height: | Size: 152 KiB |
BIN
docs/static/img/v070/mcp_chat_app.png
vendored
Normal file
After Width: | Height: | Size: 388 KiB |
BIN
docs/static/img/v070/mcp_config_app.png
vendored
Normal file
After Width: | Height: | Size: 88 KiB |
BIN
docs/static/img/v070/mcp_create_app.png
vendored
Normal file
After Width: | Height: | Size: 253 KiB |
BIN
docs/static/img/v070/model_deploy.png
vendored
Normal file
After Width: | Height: | Size: 142 KiB |
BIN
docs/static/img/v070/simple_awel.png
vendored
Normal file
After Width: | Height: | Size: 271 KiB |