fix(ChatKnowledge): add aload_document (#1548)

This commit is contained in:
Aries-ckt 2024-05-23 11:59:34 +08:00 committed by GitHub
parent 7f55aa4b6e
commit 83d7e9d82d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 180 additions and 238 deletions

View File

@ -27,6 +27,7 @@ from dbgpt.configs.model_config import (
EMBEDDING_MODEL_CONFIG,
KNOWLEDGE_UPLOAD_ROOT_PATH,
)
from dbgpt.rag import ChunkParameters
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.rag.knowledge.base import ChunkStrategy
from dbgpt.rag.knowledge.factory import KnowledgeFactory
@ -235,13 +236,30 @@ async def document_upload(
@router.post("/knowledge/{space_name}/document/sync")
def document_sync(space_name: str, request: DocumentSyncRequest):
async def document_sync(
space_name: str,
request: DocumentSyncRequest,
service: Service = Depends(get_rag_service),
):
logger.info(f"Received params: {space_name}, {request}")
try:
knowledge_space_service.sync_knowledge_document(
space_name=space_name, sync_request=request
space = service.get({"name": space_name})
if space is None:
return Result.failed(code="E000X", msg=f"space {space_name} not exist")
if request.doc_ids is None or len(request.doc_ids) == 0:
return Result.failed(code="E000X", msg="doc_ids is None")
sync_request = KnowledgeSyncRequest(
doc_id=request.doc_ids[0],
space_id=str(space.id),
model_name=request.model_name,
)
return Result.succ([])
sync_request.chunk_parameters = ChunkParameters(
chunk_strategy="Automatic",
chunk_size=request.chunk_size or 512,
chunk_overlap=request.chunk_overlap or 50,
)
doc_ids = await service.sync_document(requests=[sync_request])
return Result.succ(doc_ids)
except Exception as e:
return Result.failed(code="E000X", msg=f"document sync error {e}")

View File

@ -1,7 +1,6 @@
import json
import logging
from datetime import datetime
from typing import List
from dbgpt._private.config import Config
from dbgpt.app.knowledge.chunk_db import DocumentChunkDao, DocumentChunkEntity
@ -32,13 +31,8 @@ from dbgpt.rag.assembler.embedding import EmbeddingAssembler
from dbgpt.rag.assembler.summary import SummaryAssembler
from dbgpt.rag.chunk_manager import ChunkParameters
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.rag.knowledge.base import ChunkStrategy, KnowledgeType
from dbgpt.rag.knowledge.base import KnowledgeType
from dbgpt.rag.knowledge.factory import KnowledgeFactory
from dbgpt.rag.text_splitter.text_splitter import (
RecursiveCharacterTextSplitter,
SpacyTextSplitter,
)
from dbgpt.serve.rag.api.schemas import KnowledgeSyncRequest
from dbgpt.serve.rag.models.models import KnowledgeSpaceDao, KnowledgeSpaceEntity
from dbgpt.serve.rag.service.service import SyncStatus
from dbgpt.storage.vector_store.base import VectorStoreConfig
@ -199,186 +193,6 @@ class KnowledgeService:
total = knowledge_document_dao.get_knowledge_documents_count(query)
return DocumentQueryResponse(data=data, total=total, page=page)
def batch_document_sync(
self,
space_name,
sync_requests: List[KnowledgeSyncRequest],
) -> List[int]:
"""batch sync knowledge document chunk into vector store
Args:
- space: Knowledge Space Name
- sync_requests: List[KnowledgeSyncRequest]
Returns:
- List[int]: document ids
"""
doc_ids = []
for sync_request in sync_requests:
docs = knowledge_document_dao.documents_by_ids([sync_request.doc_id])
if len(docs) == 0:
raise Exception(
f"there are document called, doc_id: {sync_request.doc_id}"
)
doc = docs[0]
if (
doc.status == SyncStatus.RUNNING.name
or doc.status == SyncStatus.FINISHED.name
):
raise Exception(
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
)
chunk_parameters = sync_request.chunk_parameters
if chunk_parameters.chunk_strategy != ChunkStrategy.CHUNK_BY_SIZE.name:
space_context = self.get_space_context(space_name)
chunk_parameters.chunk_size = (
CFG.KNOWLEDGE_CHUNK_SIZE
if space_context is None
else int(space_context["embedding"]["chunk_size"])
)
chunk_parameters.chunk_overlap = (
CFG.KNOWLEDGE_CHUNK_OVERLAP
if space_context is None
else int(space_context["embedding"]["chunk_overlap"])
)
self._sync_knowledge_document(space_name, doc, chunk_parameters)
doc_ids.append(doc.id)
return doc_ids
def sync_knowledge_document(self, space_name, sync_request: DocumentSyncRequest):
"""sync knowledge document chunk into vector store
Args:
- space: Knowledge Space Name
- sync_request: DocumentSyncRequest
"""
from dbgpt.rag.text_splitter.pre_text_splitter import PreTextSplitter
doc_ids = sync_request.doc_ids
self.model_name = sync_request.model_name or CFG.LLM_MODEL
for doc_id in doc_ids:
query = KnowledgeDocumentEntity(id=doc_id)
docs = knowledge_document_dao.get_documents(query)
if len(docs) == 0:
raise Exception(
f"there are document called, doc_id: {sync_request.doc_id}"
)
doc = docs[0]
if (
doc.status == SyncStatus.RUNNING.name
or doc.status == SyncStatus.FINISHED.name
):
raise Exception(
f" doc:{doc.doc_name} status is {doc.status}, can not sync"
)
space_context = self.get_space_context(space_name)
chunk_size = (
CFG.KNOWLEDGE_CHUNK_SIZE
if space_context is None
else int(space_context["embedding"]["chunk_size"])
)
chunk_overlap = (
CFG.KNOWLEDGE_CHUNK_OVERLAP
if space_context is None
else int(space_context["embedding"]["chunk_overlap"])
)
if sync_request.chunk_size:
chunk_size = sync_request.chunk_size
if sync_request.chunk_overlap:
chunk_overlap = sync_request.chunk_overlap
separators = sync_request.separators or None
from dbgpt.rag.chunk_manager import ChunkParameters
chunk_parameters = ChunkParameters(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
if CFG.LANGUAGE == "en":
text_splitter = RecursiveCharacterTextSplitter(
separators=separators,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
)
else:
if separators and len(separators) > 1:
raise ValueError(
"SpacyTextSplitter do not support multipsle separators"
)
try:
separator = "\n\n" if not separators else separators[0]
text_splitter = SpacyTextSplitter(
separator=separator,
pipeline="zh_core_web_sm",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
)
except Exception:
text_splitter = RecursiveCharacterTextSplitter(
separators=separators,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
)
if sync_request.pre_separator:
logger.info(f"Use preseparator, {sync_request.pre_separator}")
text_splitter = PreTextSplitter(
pre_separator=sync_request.pre_separator,
text_splitter_impl=text_splitter,
)
chunk_parameters.text_splitter = text_splitter
self._sync_knowledge_document(space_name, doc, chunk_parameters)
return doc.id
def _sync_knowledge_document(
self,
space_name,
doc: KnowledgeDocumentEntity,
chunk_parameters: ChunkParameters,
) -> List[Chunk]:
"""sync knowledge document chunk into vector store"""
embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory
)
embedding_fn = embedding_factory.create(
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
)
spaces = self.get_knowledge_space(KnowledgeSpaceRequest(name=space_name))
if len(spaces) != 1:
raise Exception(f"invalid space name:{space_name}")
space = spaces[0]
from dbgpt.storage.vector_store.base import VectorStoreConfig
config = VectorStoreConfig(
name=space.name,
embedding_fn=embedding_fn,
max_chunks_once_load=CFG.KNOWLEDGE_MAX_CHUNKS_ONCE_LOAD,
llm_client=self.llm_client,
model_name=self.model_name,
)
vector_store_connector = VectorStoreConnector(
vector_store_type=space.vector_type, vector_store_config=config
)
knowledge = KnowledgeFactory.create(
datasource=doc.content,
knowledge_type=KnowledgeType.get_by_value(doc.doc_type),
)
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
embeddings=embedding_fn,
vector_store_connector=vector_store_connector,
)
chunk_docs = assembler.get_chunks()
doc.status = SyncStatus.RUNNING.name
doc.chunk_size = len(chunk_docs)
doc.gmt_modified = datetime.now()
knowledge_document_dao.update_knowledge_document(doc)
executor = CFG.SYSTEM_APP.get_component(
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
).create()
executor.submit(self.async_doc_embedding, assembler, chunk_docs, doc)
logger.info(f"begin save document chunks, doc:{doc.doc_name}")
return chunk_docs
async def document_summary(self, request: DocumentSummaryRequest):
"""get document summary
Args:

View File

@ -1,9 +1,11 @@
"""Embedding Assembler."""
from concurrent.futures import ThreadPoolExecutor
from typing import Any, List, Optional
from dbgpt.core import Chunk, Embeddings
from dbgpt.storage.vector_store.connector import VectorStoreConnector
from ...util.executor_utils import blocking_func_to_async
from ..assembler.base import BaseAssembler
from ..chunk_manager import ChunkParameters
from ..embedding.embedding_factory import DefaultEmbeddingFactory
@ -98,6 +100,41 @@ class EmbeddingAssembler(BaseAssembler):
embeddings=embeddings,
)
@classmethod
async def aload_from_knowledge(
cls,
knowledge: Knowledge,
vector_store_connector: VectorStoreConnector,
chunk_parameters: Optional[ChunkParameters] = None,
embedding_model: Optional[str] = None,
embeddings: Optional[Embeddings] = None,
executor: Optional[ThreadPoolExecutor] = None,
) -> "EmbeddingAssembler":
"""Load document embedding into vector store from path.
Args:
knowledge: (Knowledge) Knowledge datasource.
vector_store_connector: (VectorStoreConnector) VectorStoreConnector to use.
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for
chunking.
embedding_model: (Optional[str]) Embedding model to use.
embeddings: (Optional[Embeddings]) Embeddings to use.
executor: (Optional[ThreadPoolExecutor) ThreadPoolExecutor to use.
Returns:
EmbeddingAssembler
"""
executor = executor or ThreadPoolExecutor()
return await blocking_func_to_async(
executor,
cls,
knowledge,
vector_store_connector,
chunk_parameters,
embedding_model,
embeddings,
)
def persist(self) -> List[str]:
"""Persist chunks into vector store.

View File

@ -8,6 +8,7 @@ from typing import Any, Dict, List, Optional
from dbgpt._private.pydantic import BaseModel, ConfigDict, Field, model_to_dict
from dbgpt.core import Chunk, Embeddings
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.executor_utils import blocking_func_to_async
logger = logging.getLogger(__name__)
@ -46,6 +47,10 @@ class IndexStoreConfig(BaseModel):
class IndexStoreBase(ABC):
"""Index store base class."""
def __init__(self, executor: Optional[ThreadPoolExecutor] = None):
"""Init index store."""
self._executor = executor or ThreadPoolExecutor()
@abstractmethod
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""Load document in index database.
@ -143,6 +148,27 @@ class IndexStoreBase(ABC):
)
return ids
async def aload_document_with_limit(
self, chunks: List[Chunk], max_chunks_once_load: int = 10, max_threads: int = 1
) -> List[str]:
"""Load document in index database with specified limit.
Args:
chunks(List[Chunk]): Document chunks.
max_chunks_once_load(int): Max number of chunks to load at once.
max_threads(int): Max number of threads to use.
Return:
List[str]: Chunk ids.
"""
return await blocking_func_to_async(
self._executor,
self.load_document_with_limit,
chunks,
max_chunks_once_load,
max_threads,
)
def similar_search(
self, text: str, topk: int, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:

View File

@ -443,7 +443,7 @@ class Service(BaseService[KnowledgeSpaceEntity, SpaceServeRequest, SpaceServeRes
space_id,
doc_vo: DocumentVO,
chunk_parameters: ChunkParameters,
) -> List[Chunk]:
) -> None:
"""sync knowledge document chunk into vector store"""
embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory
@ -470,47 +470,45 @@ class Service(BaseService[KnowledgeSpaceEntity, SpaceServeRequest, SpaceServeRes
datasource=doc.content,
knowledge_type=KnowledgeType.get_by_value(doc.doc_type),
)
assembler = EmbeddingAssembler.load_from_knowledge(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
vector_store_connector=vector_store_connector,
)
chunk_docs = assembler.get_chunks()
doc.status = SyncStatus.RUNNING.name
doc.chunk_size = len(chunk_docs)
doc.gmt_modified = datetime.now()
self._document_dao.update_knowledge_document(doc)
# executor = CFG.SYSTEM_APP.get_component(
# ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
# ).create()
# executor.submit(self.async_doc_embedding, assembler, chunk_docs, doc)
asyncio.create_task(self.async_doc_embedding(assembler, chunk_docs, doc))
# asyncio.create_task(self.async_doc_embedding(assembler, chunk_docs, doc))
asyncio.create_task(
self.async_doc_embedding(
knowledge, chunk_parameters, vector_store_connector, doc
)
)
logger.info(f"begin save document chunks, doc:{doc.doc_name}")
return chunk_docs
# return chunk_docs
@trace("async_doc_embedding")
async def async_doc_embedding(self, assembler, chunk_docs, doc):
async def async_doc_embedding(
self, knowledge, chunk_parameters, vector_store_connector, doc
):
"""async document embedding into vector db
Args:
- client: EmbeddingEngine Client
- chunk_docs: List[Document]
- doc: KnowledgeDocumentEntity
- knowledge: Knowledge
- chunk_parameters: ChunkParameters
- vector_store_connector: vector_store_connector
- doc: doc
"""
logger.info(
f"async doc embedding sync, doc:{doc.doc_name}, chunks length is {len(chunk_docs)}"
)
logger.info(f"async doc embedding sync, doc:{doc.doc_name}")
try:
with root_tracer.start_span(
"app.knowledge.assembler.persist",
metadata={"doc": doc.doc_name, "chunks": len(chunk_docs)},
metadata={"doc": doc.doc_name},
):
# vector_ids = assembler.persist()
space = self.get({"name": doc.space})
if space and space.vector_type == "KnowledgeGraph":
vector_ids = await assembler.apersist()
else:
vector_ids = assembler.persist()
assembler = await EmbeddingAssembler.aload_from_knowledge(
knowledge=knowledge,
chunk_parameters=chunk_parameters,
vector_store_connector=vector_store_connector,
)
chunk_docs = assembler.get_chunks()
doc.chunk_size = len(chunk_docs)
vector_ids = await assembler.apersist()
doc.status = SyncStatus.FINISHED.name
doc.result = "document embedding success"
if vector_ids is not None:

View File

@ -37,7 +37,7 @@ class BuiltinKnowledgeGraph(KnowledgeGraphBase):
def __init__(self, config: BuiltinKnowledgeGraphConfig):
"""Create builtin knowledge graph instance."""
self._config = config
super().__init__()
self._llm_client = config.llm_client
if not self._llm_client:
raise ValueError("No llm client provided.")

View File

@ -2,6 +2,7 @@
import logging
import math
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from typing import Any, List, Optional
from dbgpt._private.pydantic import ConfigDict, Field
@ -9,6 +10,7 @@ from dbgpt.core import Chunk, Embeddings
from dbgpt.core.awel.flow import Parameter
from dbgpt.rag.index.base import IndexStoreBase, IndexStoreConfig
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.executor_utils import blocking_func_to_async
from dbgpt.util.i18n_utils import _
logger = logging.getLogger(__name__)
@ -102,6 +104,10 @@ class VectorStoreConfig(IndexStoreConfig):
class VectorStoreBase(IndexStoreBase, ABC):
"""Vector store base class."""
def __init__(self, executor: Optional[ThreadPoolExecutor] = None):
"""Initialize vector store."""
super().__init__(executor)
def filter_by_score_threshold(
self, chunks: List[Chunk], score_threshold: float
) -> List[Chunk]:
@ -160,7 +166,7 @@ class VectorStoreBase(IndexStoreBase, ABC):
return 1.0 - distance / math.sqrt(2)
async def aload_document(self, chunks: List[Chunk]) -> List[str]: # type: ignore
"""Load document in index database.
"""Async load document in index database.
Args:
chunks(List[Chunk]): document chunks.
@ -168,4 +174,4 @@ class VectorStoreBase(IndexStoreBase, ABC):
Return:
List[str]: chunk ids.
"""
raise NotImplementedError
return await blocking_func_to_async(self._executor, self.load_document, chunks)

View File

@ -62,6 +62,7 @@ class ChromaStore(VectorStoreBase):
Args:
vector_store_config(ChromaVectorConfig): vector store config.
"""
super().__init__()
chroma_vector_config = vector_store_config.to_dict(exclude_none=True)
chroma_path = chroma_vector_config.get(
"persist_path", os.path.join(PILOT_PATH, "data")

View File

@ -170,14 +170,22 @@ class VectorStoreConnector:
)
async def aload_document(self, chunks: List[Chunk]) -> List[str]:
"""Load document in vector database.
"""Async load document in vector database.
Args:
- chunks: document chunks.
Return chunk ids.
"""
return await self.client.aload_document(
chunks,
max_chunks_once_load = (
self._index_store_config.max_chunks_once_load
if self._index_store_config
else 10
)
max_threads = (
self._index_store_config.max_threads if self._index_store_config else 1
)
return await self.client.aload_document_with_limit(
chunks, max_chunks_once_load, max_threads
)
def similar_search(

View File

@ -125,6 +125,7 @@ class ElasticStore(VectorStoreBase):
Args:
vector_store_config (ElasticsearchVectorConfig): ElasticsearchStore config.
"""
super().__init__()
connect_kwargs = {}
elasticsearch_vector_config = vector_store_config.dict()
self.uri = elasticsearch_vector_config.get("uri") or os.getenv(

View File

@ -149,8 +149,14 @@ class MilvusStore(VectorStoreBase):
vector_store_config (MilvusVectorConfig): MilvusStore config.
refer to https://milvus.io/docs/v2.0.x/manage_connection.md
"""
from pymilvus import connections
super().__init__()
try:
from pymilvus import connections
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
connect_kwargs = {}
milvus_vector_config = vector_store_config.to_dict()
self.uri = milvus_vector_config.get("uri") or os.getenv(
@ -373,8 +379,13 @@ class MilvusStore(VectorStoreBase):
self, text, topk, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
"""Perform a search on a query string and return results."""
from pymilvus import Collection, DataType
try:
from pymilvus import Collection, DataType
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
"""similar_search in vector database."""
self.col = Collection(self.collection_name)
schema = self.col.schema
@ -419,7 +430,13 @@ class MilvusStore(VectorStoreBase):
Returns:
List[Tuple[Document, float]]: Result doc and score.
"""
from pymilvus import Collection
try:
from pymilvus import Collection, DataType
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
self.col = Collection(self.collection_name)
schema = self.col.schema
@ -429,7 +446,6 @@ class MilvusStore(VectorStoreBase):
self.fields.remove(x.name)
if x.is_primary:
self.primary_field = x.name
from pymilvus import DataType
if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR:
self.vector_field = x.name
@ -526,15 +542,26 @@ class MilvusStore(VectorStoreBase):
def vector_name_exists(self):
"""Whether vector name exists."""
from pymilvus import utility
try:
from pymilvus import utility
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
"""is vector store name exist."""
return utility.has_collection(self.collection_name)
def delete_vector_name(self, vector_name: str):
"""Delete vector name."""
from pymilvus import utility
try:
from pymilvus import utility
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
"""milvus delete collection name"""
logger.info(f"milvus vector_name:{vector_name} begin delete...")
utility.drop_collection(self.collection_name)
@ -542,8 +569,13 @@ class MilvusStore(VectorStoreBase):
def delete_by_ids(self, ids):
"""Delete vector by ids."""
from pymilvus import Collection
try:
from pymilvus import Collection
except ImportError:
raise ValueError(
"Could not import pymilvus python package. "
"Please install it with `pip install pymilvus`."
)
self.col = Collection(self.collection_name)
# milvus delete vectors by ids
logger.info(f"begin delete milvus ids: {ids}")

View File

@ -717,7 +717,7 @@ class OceanBaseStore(VectorStoreBase):
"""Create a OceanBaseStore instance."""
if vector_store_config.embedding_fn is None:
raise ValueError("embedding_fn is required for OceanBaseStore")
super().__init__()
self.embeddings = vector_store_config.embedding_fn
self.collection_name = vector_store_config.name
vector_store_config = vector_store_config.dict()

View File

@ -63,6 +63,7 @@ class PGVectorStore(VectorStoreBase):
raise ImportError(
"Please install the `langchain` package to use the PGVector."
)
super().__init__()
self.connection_string = vector_store_config.connection_string
self.embeddings = vector_store_config.embedding_fn
self.collection_name = vector_store_config.name

View File

@ -68,7 +68,7 @@ class WeaviateStore(VectorStoreBase):
"Could not import weaviate python package. "
"Please install it with `pip install weaviate-client`."
)
super().__init__()
self.weaviate_url = vector_store_config.weaviate_url
self.embedding = vector_store_config.embedding_fn
self.vector_name = vector_store_config.name