mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-13 05:01:25 +00:00
refactor(agent): Agent modular refactoring (#1487)
This commit is contained in:
36
dbgpt/agent/core/plan/__init__.py
Normal file
36
dbgpt/agent/core/plan/__init__.py
Normal file
@@ -0,0 +1,36 @@
|
||||
"""Plan module for the agent."""
|
||||
|
||||
from .awel.agent_operator import ( # noqa: F401
|
||||
AgentDummyTrigger,
|
||||
AWELAgentOperator,
|
||||
WrappedAgentOperator,
|
||||
)
|
||||
from .awel.agent_operator_resource import ( # noqa: F401
|
||||
AWELAgent,
|
||||
AWELAgentConfig,
|
||||
AWELAgentResource,
|
||||
)
|
||||
from .awel.team_awel_layout import ( # noqa: F401
|
||||
AWELTeamContext,
|
||||
DefaultAWELLayoutManager,
|
||||
WrappedAWELLayoutManager,
|
||||
)
|
||||
from .plan_action import PlanAction, PlanInput # noqa: F401
|
||||
from .planner_agent import PlannerAgent # noqa: F401
|
||||
from .team_auto_plan import AutoPlanChatManager # noqa: F401
|
||||
|
||||
__all__ = [
|
||||
"PlanAction",
|
||||
"PlanInput",
|
||||
"PlannerAgent",
|
||||
"AutoPlanChatManager",
|
||||
"AWELAgent",
|
||||
"AWELAgentConfig",
|
||||
"AWELAgentResource",
|
||||
"AWELTeamContext",
|
||||
"DefaultAWELLayoutManager",
|
||||
"WrappedAWELLayoutManager",
|
||||
"AgentDummyTrigger",
|
||||
"AWELAgentOperator",
|
||||
"WrappedAgentOperator",
|
||||
]
|
4
dbgpt/agent/core/plan/awel/__init__.py
Normal file
4
dbgpt/agent/core/plan/awel/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
"""External planner.
|
||||
|
||||
Use AWEL as the external planner.
|
||||
"""
|
311
dbgpt/agent/core/plan/awel/agent_operator.py
Normal file
311
dbgpt/agent/core/plan/awel/agent_operator.py
Normal file
@@ -0,0 +1,311 @@
|
||||
"""Agent Operator for AWEL."""
|
||||
|
||||
from abc import ABC
|
||||
from typing import List, Optional, Type
|
||||
|
||||
from dbgpt.core.awel import MapOperator
|
||||
from dbgpt.core.awel.flow import (
|
||||
IOField,
|
||||
OperatorCategory,
|
||||
OperatorType,
|
||||
Parameter,
|
||||
ViewMetadata,
|
||||
)
|
||||
from dbgpt.core.awel.trigger.base import Trigger
|
||||
from dbgpt.core.interface.message import ModelMessageRoleType
|
||||
|
||||
# TODO: Don't dependent on MixinLLMOperator
|
||||
from dbgpt.model.operators.llm_operator import MixinLLMOperator
|
||||
|
||||
from ....util.llm.llm import LLMConfig
|
||||
from ...agent import Agent, AgentGenerateContext, AgentMessage
|
||||
from ...agent_manage import get_agent_manager
|
||||
from ...base_agent import ConversableAgent
|
||||
from .agent_operator_resource import AWELAgent
|
||||
|
||||
|
||||
class BaseAgentOperator:
|
||||
"""The abstract operator for an Agent."""
|
||||
|
||||
SHARE_DATA_KEY_MODEL_NAME = "share_data_key_agent_name"
|
||||
|
||||
def __init__(self, agent: Optional[Agent] = None):
|
||||
"""Create an AgentOperator."""
|
||||
self._agent = agent
|
||||
|
||||
@property
|
||||
def agent(self) -> Agent:
|
||||
"""Return the Agent."""
|
||||
if not self._agent:
|
||||
raise ValueError("agent is not set")
|
||||
return self._agent
|
||||
|
||||
|
||||
class WrappedAgentOperator(
|
||||
BaseAgentOperator, MapOperator[AgentGenerateContext, AgentGenerateContext], ABC
|
||||
):
|
||||
"""The Agent operator.
|
||||
|
||||
Wrap the agent and trigger the agent to generate a reply.
|
||||
"""
|
||||
|
||||
def __init__(self, agent: Agent, **kwargs):
|
||||
"""Create an WrappedAgentOperator."""
|
||||
super().__init__(agent=agent)
|
||||
MapOperator.__init__(self, **kwargs)
|
||||
|
||||
async def map(self, input_value: AgentGenerateContext) -> AgentGenerateContext:
|
||||
"""Trigger agent to generate a reply."""
|
||||
now_rely_messages: List[AgentMessage] = []
|
||||
if not input_value.message:
|
||||
raise ValueError("The message is empty.")
|
||||
input_message = input_value.message.copy()
|
||||
|
||||
# Isolate the message delivery mechanism and pass it to the operator
|
||||
_goal = self.agent.name if self.agent.name else self.agent.role
|
||||
current_goal = f"[{_goal}]:"
|
||||
|
||||
if input_message.content:
|
||||
current_goal += input_message.content
|
||||
input_message.current_goal = current_goal
|
||||
|
||||
# What was received was the User message
|
||||
human_message = input_message.copy()
|
||||
human_message.role = ModelMessageRoleType.HUMAN
|
||||
now_rely_messages.append(human_message)
|
||||
|
||||
# Send a message (no reply required) and pass the message content
|
||||
now_message = input_message
|
||||
if input_value.rely_messages and len(input_value.rely_messages) > 0:
|
||||
now_message = input_value.rely_messages[-1]
|
||||
if not input_value.sender:
|
||||
raise ValueError("The sender is empty.")
|
||||
await input_value.sender.send(
|
||||
now_message, self.agent, input_value.reviewer, False
|
||||
)
|
||||
|
||||
agent_reply_message = await self.agent.generate_reply(
|
||||
received_message=input_message,
|
||||
sender=input_value.sender,
|
||||
reviewer=input_value.reviewer,
|
||||
rely_messages=input_value.rely_messages,
|
||||
)
|
||||
is_success = agent_reply_message.success
|
||||
|
||||
if not is_success:
|
||||
raise ValueError(
|
||||
f"The task failed at step {self.agent.role} and the attempt "
|
||||
f"to repair it failed. The final reason for "
|
||||
f"failure:{agent_reply_message.content}!"
|
||||
)
|
||||
|
||||
# What is sent is an AI message
|
||||
ai_message = agent_reply_message.copy()
|
||||
ai_message.role = ModelMessageRoleType.AI
|
||||
|
||||
now_rely_messages.append(ai_message)
|
||||
|
||||
# Handle user goals and outcome dependencies
|
||||
return AgentGenerateContext(
|
||||
message=input_message,
|
||||
sender=self.agent,
|
||||
reviewer=input_value.reviewer,
|
||||
# Default single step transfer of information
|
||||
rely_messages=now_rely_messages,
|
||||
silent=input_value.silent,
|
||||
)
|
||||
|
||||
|
||||
class AWELAgentOperator(
|
||||
MixinLLMOperator, MapOperator[AgentGenerateContext, AgentGenerateContext]
|
||||
):
|
||||
"""The Agent operator for AWEL."""
|
||||
|
||||
metadata = ViewMetadata(
|
||||
label="AWEL Agent Operator",
|
||||
name="agent_operator",
|
||||
category=OperatorCategory.AGENT,
|
||||
description="The Agent operator.",
|
||||
parameters=[
|
||||
Parameter.build_from(
|
||||
"Agent",
|
||||
"awel_agent",
|
||||
AWELAgent,
|
||||
description="The dbgpt agent.",
|
||||
),
|
||||
],
|
||||
inputs=[
|
||||
IOField.build_from(
|
||||
"Agent Operator Request",
|
||||
"agent_operator_request",
|
||||
AgentGenerateContext,
|
||||
"The Agent Operator request.",
|
||||
)
|
||||
],
|
||||
outputs=[
|
||||
IOField.build_from(
|
||||
"Agent Operator Output",
|
||||
"agent_operator_output",
|
||||
AgentGenerateContext,
|
||||
description="The Agent Operator output.",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
def __init__(self, awel_agent: AWELAgent, **kwargs):
|
||||
"""Create an AgentOperator."""
|
||||
MixinLLMOperator.__init__(self)
|
||||
MapOperator.__init__(self, **kwargs)
|
||||
self.awel_agent = awel_agent
|
||||
|
||||
async def map(
|
||||
self,
|
||||
input_value: AgentGenerateContext,
|
||||
) -> AgentGenerateContext:
|
||||
"""Trigger agent to generate a reply."""
|
||||
if not input_value.message:
|
||||
raise ValueError("The message is empty.")
|
||||
input_message = input_value.message.copy()
|
||||
agent = await self.get_agent(input_value)
|
||||
if agent.fixed_subgoal and len(agent.fixed_subgoal) > 0:
|
||||
# Isolate the message delivery mechanism and pass it to the operator
|
||||
current_goal = f"[{agent.name if agent.name else agent.role}]:"
|
||||
if agent.fixed_subgoal:
|
||||
current_goal += agent.fixed_subgoal
|
||||
input_message.current_goal = current_goal
|
||||
input_message.content = agent.fixed_subgoal
|
||||
else:
|
||||
# Isolate the message delivery mechanism and pass it to the operator
|
||||
current_goal = f"[{agent.name if agent.name else agent.role}]:"
|
||||
if input_message.content:
|
||||
current_goal += input_message.content
|
||||
input_message.current_goal = current_goal
|
||||
|
||||
now_rely_messages: List[AgentMessage] = []
|
||||
# What was received was the User message
|
||||
human_message = input_message.copy()
|
||||
human_message.role = ModelMessageRoleType.HUMAN
|
||||
now_rely_messages.append(human_message)
|
||||
|
||||
# Send a message (no reply required) and pass the message content
|
||||
|
||||
now_message = input_message
|
||||
if input_value.rely_messages and len(input_value.rely_messages) > 0:
|
||||
now_message = input_value.rely_messages[-1]
|
||||
sender = input_value.sender
|
||||
if not sender:
|
||||
raise ValueError("The sender is empty.")
|
||||
await sender.send(now_message, agent, input_value.reviewer, False)
|
||||
|
||||
agent_reply_message = await agent.generate_reply(
|
||||
received_message=input_message,
|
||||
sender=sender,
|
||||
reviewer=input_value.reviewer,
|
||||
rely_messages=input_value.rely_messages,
|
||||
)
|
||||
|
||||
is_success = agent_reply_message.success
|
||||
|
||||
if not is_success:
|
||||
raise ValueError(
|
||||
f"The task failed at step {agent.role} and the attempt to "
|
||||
f"repair it failed. The final reason for "
|
||||
f"failure:{agent_reply_message.content}!"
|
||||
)
|
||||
|
||||
# What is sent is an AI message
|
||||
ai_message: AgentMessage = agent_reply_message.copy()
|
||||
ai_message.role = ModelMessageRoleType.AI
|
||||
now_rely_messages.append(ai_message)
|
||||
|
||||
# Handle user goals and outcome dependencies
|
||||
return AgentGenerateContext(
|
||||
message=input_message,
|
||||
sender=agent,
|
||||
reviewer=input_value.reviewer,
|
||||
# Default single step transfer of information
|
||||
rely_messages=now_rely_messages,
|
||||
silent=input_value.silent,
|
||||
memory=input_value.memory.structure_clone() if input_value.memory else None,
|
||||
agent_context=input_value.agent_context,
|
||||
resource_loader=input_value.resource_loader,
|
||||
llm_client=input_value.llm_client,
|
||||
round_index=agent.consecutive_auto_reply_counter,
|
||||
)
|
||||
|
||||
async def get_agent(
|
||||
self,
|
||||
input_value: AgentGenerateContext,
|
||||
) -> ConversableAgent:
|
||||
"""Build the agent."""
|
||||
# agent build
|
||||
agent_cls: Type[ConversableAgent] = get_agent_manager().get_by_name(
|
||||
self.awel_agent.agent_profile
|
||||
)
|
||||
llm_config = self.awel_agent.llm_config
|
||||
|
||||
if not llm_config:
|
||||
if input_value.llm_client:
|
||||
llm_config = LLMConfig(llm_client=input_value.llm_client)
|
||||
else:
|
||||
llm_config = LLMConfig(llm_client=self.llm_client)
|
||||
else:
|
||||
if not llm_config.llm_client:
|
||||
if input_value.llm_client:
|
||||
llm_config.llm_client = input_value.llm_client
|
||||
else:
|
||||
llm_config.llm_client = self.llm_client
|
||||
|
||||
kwargs = {}
|
||||
if self.awel_agent.role_name:
|
||||
kwargs["name"] = self.awel_agent.role_name
|
||||
if self.awel_agent.fixed_subgoal:
|
||||
kwargs["fixed_subgoal"] = self.awel_agent.fixed_subgoal
|
||||
|
||||
agent = (
|
||||
await agent_cls(**kwargs)
|
||||
.bind(input_value.memory)
|
||||
.bind(llm_config)
|
||||
.bind(input_value.agent_context)
|
||||
.bind(self.awel_agent.resources)
|
||||
.bind(input_value.resource_loader)
|
||||
.build()
|
||||
)
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
class AgentDummyTrigger(Trigger):
|
||||
"""Http trigger for AWEL.
|
||||
|
||||
Http trigger is used to trigger a DAG by http request.
|
||||
"""
|
||||
|
||||
metadata = ViewMetadata(
|
||||
label="Agent Trigger",
|
||||
name="agent_trigger",
|
||||
category=OperatorCategory.AGENT,
|
||||
operator_type=OperatorType.INPUT,
|
||||
description="Trigger your workflow by agent",
|
||||
inputs=[],
|
||||
parameters=[],
|
||||
outputs=[
|
||||
IOField.build_from(
|
||||
"Agent Operator Context",
|
||||
"agent_operator_context",
|
||||
AgentGenerateContext,
|
||||
description="The Agent Operator output.",
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""Initialize a HttpTrigger."""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def trigger(self, **kwargs) -> None:
|
||||
"""Trigger the DAG. Not used in HttpTrigger."""
|
||||
raise NotImplementedError("Dummy trigger does not support trigger.")
|
209
dbgpt/agent/core/plan/awel/agent_operator_resource.py
Normal file
209
dbgpt/agent/core/plan/awel/agent_operator_resource.py
Normal file
@@ -0,0 +1,209 @@
|
||||
"""The AWEL Agent Operator Resource."""
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from dbgpt._private.pydantic import BaseModel, ConfigDict, Field, model_validator
|
||||
from dbgpt.core import LLMClient
|
||||
from dbgpt.core.awel.flow import (
|
||||
FunctionDynamicOptions,
|
||||
OptionValue,
|
||||
Parameter,
|
||||
ResourceCategory,
|
||||
register_resource,
|
||||
)
|
||||
|
||||
from ....resource.resource_api import AgentResource, ResourceType
|
||||
from ....util.llm.llm import LLMConfig, LLMStrategyType
|
||||
from ...agent_manage import get_agent_manager
|
||||
|
||||
|
||||
@register_resource(
|
||||
label="AWEL Agent Resource",
|
||||
name="agent_operator_resource",
|
||||
description="The Agent Resource.",
|
||||
category=ResourceCategory.AGENT,
|
||||
parameters=[
|
||||
Parameter.build_from(
|
||||
label="Agent Resource Type",
|
||||
name="agent_resource_type",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
options=[
|
||||
OptionValue(label=item.name, name=item.value, value=item.value)
|
||||
for item in ResourceType
|
||||
],
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Agent Resource Name",
|
||||
name="agent_resource_name",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent resource name.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Agent Resource Value",
|
||||
name="agent_resource_value",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent resource value.",
|
||||
),
|
||||
],
|
||||
alias=[
|
||||
"dbgpt.serve.agent.team.layout.agent_operator_resource.AwelAgentResource",
|
||||
"dbgpt.agent.plan.awel.agent_operator_resource.AWELAgentResource",
|
||||
],
|
||||
)
|
||||
class AWELAgentResource(AgentResource):
|
||||
"""AWEL Agent Resource."""
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def pre_fill(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Pre fill the agent ResourceType."""
|
||||
if not isinstance(values, dict):
|
||||
return values
|
||||
name = values.pop("agent_resource_name")
|
||||
type = values.pop("agent_resource_type")
|
||||
value = values.pop("agent_resource_value")
|
||||
|
||||
values["name"] = name
|
||||
values["type"] = ResourceType(type)
|
||||
values["value"] = value
|
||||
|
||||
return values
|
||||
|
||||
|
||||
@register_resource(
|
||||
label="AWEL Agent LLM Config",
|
||||
name="agent_operator_llm_config",
|
||||
description="The Agent LLM Config.",
|
||||
category=ResourceCategory.AGENT,
|
||||
parameters=[
|
||||
Parameter.build_from(
|
||||
"LLM Client",
|
||||
"llm_client",
|
||||
LLMClient,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The LLM Client.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Agent LLM Strategy",
|
||||
name="llm_strategy",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
options=[
|
||||
OptionValue(label=item.name, name=item.value, value=item.value)
|
||||
for item in LLMStrategyType
|
||||
],
|
||||
description="The Agent LLM Strategy.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Agent LLM Strategy Value",
|
||||
name="strategy_context",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent LLM Strategy Value.",
|
||||
),
|
||||
],
|
||||
alias=[
|
||||
"dbgpt.serve.agent.team.layout.agent_operator_resource.AwelAgentConfig",
|
||||
"dbgpt.agent.plan.awel.agent_operator_resource.AWELAgentConfig",
|
||||
],
|
||||
)
|
||||
class AWELAgentConfig(LLMConfig):
|
||||
"""AWEL Agent Config."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def _agent_resource_option_values() -> List[OptionValue]:
|
||||
return [
|
||||
OptionValue(label=item["name"], name=item["name"], value=item["name"])
|
||||
for item in get_agent_manager().list_agents()
|
||||
]
|
||||
|
||||
|
||||
@register_resource(
|
||||
label="AWEL Layout Agent",
|
||||
name="agent_operator_agent",
|
||||
description="The Agent to build the Agent Operator.",
|
||||
category=ResourceCategory.AGENT,
|
||||
parameters=[
|
||||
Parameter.build_from(
|
||||
label="Agent Profile",
|
||||
name="agent_profile",
|
||||
type=str,
|
||||
description="Which agent want use.",
|
||||
options=FunctionDynamicOptions(func=_agent_resource_option_values),
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Role Name",
|
||||
name="role_name",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent role name.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Fixed Gogal",
|
||||
name="fixed_subgoal",
|
||||
type=str,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent fixed gogal.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Agent Resource",
|
||||
name="agent_resource",
|
||||
type=AWELAgentResource,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent resource.",
|
||||
),
|
||||
Parameter.build_from(
|
||||
label="Agent LLM Config",
|
||||
name="agent_llm_Config",
|
||||
type=AWELAgentConfig,
|
||||
optional=True,
|
||||
default=None,
|
||||
description="The agent llm config.",
|
||||
),
|
||||
],
|
||||
alias=[
|
||||
"dbgpt.serve.agent.team.layout.agent_operator_resource.AwelAgent",
|
||||
"dbgpt.agent.plan.awel.agent_operator_resource.AWELAgent",
|
||||
],
|
||||
)
|
||||
class AWELAgent(BaseModel):
|
||||
"""AWEL Agent."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
agent_profile: str
|
||||
role_name: Optional[str] = None
|
||||
llm_config: Optional[LLMConfig] = None
|
||||
resources: List[AgentResource] = Field(default_factory=list)
|
||||
fixed_subgoal: Optional[str] = None
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def pre_fill(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Pre fill the agent ResourceType."""
|
||||
if not isinstance(values, dict):
|
||||
return values
|
||||
resource = values.pop("agent_resource")
|
||||
llm_config = values.pop("agent_llm_Config")
|
||||
|
||||
if resource is not None:
|
||||
values["resources"] = [resource]
|
||||
|
||||
if llm_config is not None:
|
||||
values["llm_config"] = llm_config
|
||||
|
||||
return values
|
268
dbgpt/agent/core/plan/awel/team_awel_layout.py
Normal file
268
dbgpt/agent/core/plan/awel/team_awel_layout.py
Normal file
@@ -0,0 +1,268 @@
|
||||
"""The manager of the team for the AWEL layout."""
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, cast
|
||||
|
||||
from dbgpt._private.config import Config
|
||||
from dbgpt._private.pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
model_to_dict,
|
||||
validator,
|
||||
)
|
||||
from dbgpt.core.awel import DAG
|
||||
from dbgpt.core.awel.dag.dag_manager import DAGManager
|
||||
|
||||
from ...action.base import ActionOutput
|
||||
from ...agent import Agent, AgentGenerateContext, AgentMessage
|
||||
from ...base_team import ManagerAgent
|
||||
from ...profile import DynConfig, ProfileConfig
|
||||
from .agent_operator import AWELAgentOperator, WrappedAgentOperator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AWELTeamContext(BaseModel):
|
||||
"""The context of the team for the AWEL layout."""
|
||||
|
||||
dag_id: str = Field(
|
||||
...,
|
||||
description="The unique id of dag",
|
||||
examples=["flow_dag_testflow_66d8e9d6-f32e-4540-a5bd-ea0648145d0e"],
|
||||
)
|
||||
uid: str = Field(
|
||||
default=None,
|
||||
description="The unique id of flow",
|
||||
examples=["66d8e9d6-f32e-4540-a5bd-ea0648145d0e"],
|
||||
)
|
||||
name: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The name of dag",
|
||||
)
|
||||
label: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The label of dag",
|
||||
)
|
||||
version: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The version of dag",
|
||||
)
|
||||
description: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The description of dag",
|
||||
)
|
||||
editable: bool = Field(
|
||||
default=False,
|
||||
description="is the dag is editable",
|
||||
examples=[True, False],
|
||||
)
|
||||
state: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The state of dag",
|
||||
)
|
||||
user_name: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The owner of current dag",
|
||||
)
|
||||
sys_code: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The system code of current dag",
|
||||
)
|
||||
flow_category: Optional[str] = Field(
|
||||
default="common",
|
||||
description="The flow category of current dag",
|
||||
)
|
||||
|
||||
def to_dict(self):
|
||||
"""Convert the object to a dictionary."""
|
||||
return model_to_dict(self)
|
||||
|
||||
|
||||
class AWELBaseManager(ManagerAgent, ABC):
|
||||
"""AWEL base manager."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
profile: ProfileConfig = ProfileConfig(
|
||||
name="AWELBaseManager",
|
||||
role=DynConfig(
|
||||
"PlanManager", category="agent", key="dbgpt_agent_plan_awel_profile_name"
|
||||
),
|
||||
goal=DynConfig(
|
||||
"Promote and solve user problems according to the process arranged "
|
||||
"by AWEL.",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_awel_profile_goal",
|
||||
),
|
||||
desc=DynConfig(
|
||||
"Promote and solve user problems according to the process arranged "
|
||||
"by AWEL.",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_awel_profile_desc",
|
||||
),
|
||||
)
|
||||
|
||||
async def _a_process_received_message(self, message: AgentMessage, sender: Agent):
|
||||
"""Process the received message."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_dag(self) -> DAG:
|
||||
"""Get the DAG of the manager."""
|
||||
|
||||
async def act(
|
||||
self,
|
||||
message: Optional[str],
|
||||
sender: Optional[Agent] = None,
|
||||
reviewer: Optional[Agent] = None,
|
||||
**kwargs,
|
||||
) -> Optional[ActionOutput]:
|
||||
"""Perform the action."""
|
||||
try:
|
||||
agent_dag = self.get_dag()
|
||||
last_node: AWELAgentOperator = cast(
|
||||
AWELAgentOperator, agent_dag.leaf_nodes[0]
|
||||
)
|
||||
|
||||
start_message_context: AgentGenerateContext = AgentGenerateContext(
|
||||
message=AgentMessage(content=message, current_goal=message),
|
||||
sender=sender,
|
||||
reviewer=reviewer,
|
||||
memory=self.memory.structure_clone(),
|
||||
agent_context=self.agent_context,
|
||||
resource_loader=self.resource_loader,
|
||||
llm_client=self.not_null_llm_config.llm_client,
|
||||
)
|
||||
final_generate_context: AgentGenerateContext = await last_node.call(
|
||||
call_data=start_message_context
|
||||
)
|
||||
last_message = final_generate_context.rely_messages[-1]
|
||||
|
||||
last_agent = await last_node.get_agent(final_generate_context)
|
||||
if final_generate_context.round_index is not None:
|
||||
last_agent.consecutive_auto_reply_counter = (
|
||||
final_generate_context.round_index
|
||||
)
|
||||
if not sender:
|
||||
raise ValueError("sender is required!")
|
||||
await last_agent.send(
|
||||
last_message, sender, start_message_context.reviewer, False
|
||||
)
|
||||
|
||||
view_message: Optional[str] = None
|
||||
if last_message.action_report:
|
||||
view_message = last_message.action_report.get("view", None)
|
||||
|
||||
return ActionOutput(
|
||||
content=last_message.content,
|
||||
view=view_message,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception(f"DAG run failed!{str(e)}")
|
||||
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content=f"Failed to complete goal! {str(e)}",
|
||||
)
|
||||
|
||||
|
||||
class WrappedAWELLayoutManager(AWELBaseManager):
|
||||
"""The manager of the team for the AWEL layout.
|
||||
|
||||
Receives a DAG or builds a DAG from the agents.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
dag: Optional[DAG] = Field(None, description="The DAG of the manager")
|
||||
|
||||
def get_dag(self) -> DAG:
|
||||
"""Get the DAG of the manager."""
|
||||
if self.dag:
|
||||
return self.dag
|
||||
conv_id = self.not_null_agent_context.conv_id
|
||||
last_node: Optional[WrappedAgentOperator] = None
|
||||
with DAG(
|
||||
f"layout_agents_{self.not_null_agent_context.gpts_app_name}_{conv_id}"
|
||||
) as dag:
|
||||
for agent in self.agents:
|
||||
now_node = WrappedAgentOperator(agent=agent)
|
||||
if not last_node:
|
||||
last_node = now_node
|
||||
else:
|
||||
last_node >> now_node
|
||||
last_node = now_node
|
||||
self.dag = dag
|
||||
return dag
|
||||
|
||||
async def act(
|
||||
self,
|
||||
message: Optional[str],
|
||||
sender: Optional[Agent] = None,
|
||||
reviewer: Optional[Agent] = None,
|
||||
**kwargs,
|
||||
) -> Optional[ActionOutput]:
|
||||
"""Perform the action."""
|
||||
try:
|
||||
dag = self.get_dag()
|
||||
last_node: WrappedAgentOperator = cast(
|
||||
WrappedAgentOperator, dag.leaf_nodes[0]
|
||||
)
|
||||
start_message_context: AgentGenerateContext = AgentGenerateContext(
|
||||
message=AgentMessage(content=message, current_goal=message),
|
||||
sender=self,
|
||||
reviewer=reviewer,
|
||||
)
|
||||
final_generate_context: AgentGenerateContext = await last_node.call(
|
||||
call_data=start_message_context
|
||||
)
|
||||
last_message = final_generate_context.rely_messages[-1]
|
||||
|
||||
last_agent = last_node.agent
|
||||
await last_agent.send(
|
||||
last_message,
|
||||
self,
|
||||
start_message_context.reviewer,
|
||||
False,
|
||||
)
|
||||
|
||||
view_message: Optional[str] = None
|
||||
if last_message.action_report:
|
||||
view_message = last_message.action_report.get("view", None)
|
||||
|
||||
return ActionOutput(
|
||||
content=last_message.content,
|
||||
view=view_message,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception(f"DAG run failed!{str(e)}")
|
||||
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content=f"Failed to complete goal! {str(e)}",
|
||||
)
|
||||
|
||||
|
||||
class DefaultAWELLayoutManager(AWELBaseManager):
|
||||
"""The manager of the team for the AWEL layout."""
|
||||
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True)
|
||||
|
||||
dag: AWELTeamContext = Field(...)
|
||||
|
||||
@validator("dag")
|
||||
def check_dag(cls, value):
|
||||
"""Check the DAG of the manager."""
|
||||
assert value is not None and value != "", "dag must not be empty"
|
||||
return value
|
||||
|
||||
def get_dag(self) -> DAG:
|
||||
"""Get the DAG of the manager."""
|
||||
cfg = Config()
|
||||
_dag_manager = DAGManager.get_instance(cfg.SYSTEM_APP) # type: ignore
|
||||
agent_dag: Optional[DAG] = _dag_manager.get_dag(alias_name=self.dag.uid)
|
||||
if agent_dag is None:
|
||||
raise ValueError(f"The configured flow cannot be found![{self.dag.name}]")
|
||||
return agent_dag
|
139
dbgpt/agent/core/plan/plan_action.py
Normal file
139
dbgpt/agent/core/plan/plan_action.py
Normal file
@@ -0,0 +1,139 @@
|
||||
"""Plan Action."""
|
||||
|
||||
import logging
|
||||
from typing import List, Optional
|
||||
|
||||
from dbgpt._private.pydantic import BaseModel, Field
|
||||
from dbgpt.vis.tags.vis_agent_plans import Vis, VisAgentPlans
|
||||
|
||||
from ...resource.resource_api import AgentResource
|
||||
from ..action.base import Action, ActionOutput
|
||||
from ..agent import AgentContext
|
||||
from ..memory.gpts.base import GptsPlan
|
||||
from ..memory.gpts.gpts_memory import GptsPlansMemory
|
||||
from ..schema import Status
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PlanInput(BaseModel):
|
||||
"""Plan input model."""
|
||||
|
||||
serial_number: int = Field(
|
||||
0,
|
||||
description="Number of sub-tasks",
|
||||
)
|
||||
agent: str = Field(..., description="The agent name to complete current task")
|
||||
content: str = Field(
|
||||
...,
|
||||
description="The task content of current step, make sure it can by executed by"
|
||||
" agent",
|
||||
)
|
||||
rely: str = Field(
|
||||
...,
|
||||
description="The rely task number(serial_number), e.g. 1,2,3, empty if no rely",
|
||||
)
|
||||
|
||||
|
||||
class PlanAction(Action[List[PlanInput]]):
|
||||
"""Plan action class."""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Create a plan action."""
|
||||
super().__init__()
|
||||
self._render_protocol = VisAgentPlans()
|
||||
|
||||
@property
|
||||
def render_protocol(self) -> Optional[Vis]:
|
||||
"""Return the render protocol."""
|
||||
return self._render_protocol
|
||||
|
||||
@property
|
||||
def out_model_type(self):
|
||||
"""Output model type."""
|
||||
return List[PlanInput]
|
||||
|
||||
async def run(
|
||||
self,
|
||||
ai_message: str,
|
||||
resource: Optional[AgentResource] = None,
|
||||
rely_action_out: Optional[ActionOutput] = None,
|
||||
need_vis_render: bool = True,
|
||||
**kwargs,
|
||||
) -> ActionOutput:
|
||||
"""Run the plan action."""
|
||||
context: AgentContext = kwargs["context"]
|
||||
plans_memory: GptsPlansMemory = kwargs["plans_memory"]
|
||||
try:
|
||||
param: List[PlanInput] = self._input_convert(ai_message, List[PlanInput])
|
||||
except Exception as e:
|
||||
logger.exception((str(e)))
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content="The requested correctly structured answer could not be found.",
|
||||
)
|
||||
fail_reason = ""
|
||||
|
||||
try:
|
||||
response_success = True
|
||||
plan_objects = []
|
||||
try:
|
||||
for item in param:
|
||||
plan = GptsPlan(
|
||||
conv_id=context.conv_id,
|
||||
sub_task_num=item.serial_number,
|
||||
sub_task_content=item.content,
|
||||
)
|
||||
plan.resource_name = ""
|
||||
plan.max_retry_times = context.max_retry_round
|
||||
plan.sub_task_agent = item.agent
|
||||
plan.sub_task_title = item.content
|
||||
plan.rely = item.rely
|
||||
plan.retry_times = 0
|
||||
plan.state = Status.TODO.value
|
||||
plan_objects.append(plan)
|
||||
|
||||
plans_memory.remove_by_conv_id(context.conv_id)
|
||||
plans_memory.batch_save(plan_objects)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(str(e))
|
||||
fail_reason = (
|
||||
f"The generated plan cannot be stored, reason: {str(e)}."
|
||||
f" Please check whether it is a problem with the plan content. "
|
||||
f"If so, please regenerate the correct plan. If not, please return"
|
||||
f" 'TERMINATE'."
|
||||
)
|
||||
response_success = False
|
||||
|
||||
if response_success:
|
||||
plan_content = []
|
||||
mk_plans = []
|
||||
for item in param:
|
||||
plan_content.append(
|
||||
{
|
||||
"name": item.content,
|
||||
"num": item.serial_number,
|
||||
"status": Status.TODO.value,
|
||||
"agent": item.agent,
|
||||
"rely": item.rely,
|
||||
"markdown": "",
|
||||
}
|
||||
)
|
||||
mk_plans.append(
|
||||
f"- {item.serial_number}.{item.content}[{item.agent}]"
|
||||
)
|
||||
|
||||
view = "\n".join(mk_plans)
|
||||
return ActionOutput(
|
||||
is_exe_success=True,
|
||||
content=ai_message,
|
||||
view=view,
|
||||
)
|
||||
else:
|
||||
raise ValueError(fail_reason)
|
||||
except Exception as e:
|
||||
logger.exception("Plan Action Run Failed!")
|
||||
return ActionOutput(
|
||||
is_exe_success=False, content=f"Plan action run failed!{str(e)}"
|
||||
)
|
165
dbgpt/agent/core/plan/planner_agent.py
Normal file
165
dbgpt/agent/core/plan/planner_agent.py
Normal file
@@ -0,0 +1,165 @@
|
||||
"""Planner Agent."""
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from dbgpt._private.pydantic import Field
|
||||
|
||||
from ..agent import AgentMessage
|
||||
from ..base_agent import ConversableAgent
|
||||
from ..plan.plan_action import PlanAction
|
||||
from ..profile import DynConfig, ProfileConfig
|
||||
|
||||
|
||||
class PlannerAgent(ConversableAgent):
|
||||
"""Planner Agent.
|
||||
|
||||
Planner agent, realizing task goal planning decomposition through LLM.
|
||||
"""
|
||||
|
||||
agents: List[ConversableAgent] = Field(default_factory=list)
|
||||
|
||||
profile: ProfileConfig = ProfileConfig(
|
||||
name=DynConfig(
|
||||
"Planner",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_name",
|
||||
),
|
||||
role=DynConfig(
|
||||
"Planner",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_role",
|
||||
),
|
||||
goal=DynConfig(
|
||||
"Understand each of the following intelligent agents and their "
|
||||
"capabilities, using the provided resources, solve user problems by "
|
||||
"coordinating intelligent agents. Please utilize your LLM's knowledge "
|
||||
"and understanding ability to comprehend the intent and goals of the "
|
||||
"user's problem, generating a task plan that can be completed through"
|
||||
" the collaboration of intelligent agents without user assistance.",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_goal",
|
||||
),
|
||||
expand_prompt=DynConfig(
|
||||
"Available Intelligent Agents:\n {{ agents }}",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_expand_prompt",
|
||||
),
|
||||
constraints=DynConfig(
|
||||
[
|
||||
"Every step of the task plan should exist to advance towards solving "
|
||||
"the user's goals. Do not generate meaningless task steps; ensure "
|
||||
"that each step has a clear goal and its content is complete.",
|
||||
"Pay attention to the dependencies and logic of each step in the task "
|
||||
"plan. For the steps that are depended upon, consider the data they "
|
||||
"depend on and whether it can be obtained based on the current goal. "
|
||||
"If it cannot be obtained, please indicate in the goal that the "
|
||||
"dependent data needs to be generated.",
|
||||
"Each step must be an independently achievable goal. Ensure that the "
|
||||
"logic and information are complete. Avoid steps with unclear "
|
||||
"objectives, like 'Analyze the retrieved issues data,' where it's "
|
||||
"unclear what specific content needs to be analyzed.",
|
||||
"Please ensure that only the intelligent agents mentioned above are "
|
||||
"used, and you may use only the necessary parts of them. Allocate "
|
||||
"them to appropriate steps strictly based on their described "
|
||||
"capabilities and limitations. Each intelligent agent can be reused.",
|
||||
"Utilize the provided resources to assist in generating the plan "
|
||||
"steps according to the actual needs of the user's goals. Do not use "
|
||||
"unnecessary resources.",
|
||||
"Each step should ideally use only one type of resource to accomplish "
|
||||
"a sub-goal. If the current goal can be broken down into multiple "
|
||||
"subtasks of the same type, you can create mutually independent "
|
||||
"parallel tasks.",
|
||||
"Data resources can be loaded and utilized by the appropriate "
|
||||
"intelligent agents without the need to consider the issues related "
|
||||
"to data loading links.",
|
||||
"Try to merge continuous steps that have sequential dependencies. If "
|
||||
"the user's goal does not require splitting, you can create a "
|
||||
"single-step task with content that is the user's goal.",
|
||||
"Carefully review the plan to ensure it comprehensively covers all "
|
||||
"information involved in the user's problem and can ultimately "
|
||||
"achieve the goal. Confirm whether each step includes the necessary "
|
||||
"resource information, such as URLs, resource names, etc.",
|
||||
],
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_constraints",
|
||||
),
|
||||
desc=DynConfig(
|
||||
"You are a task planning expert! You can coordinate intelligent agents"
|
||||
" and allocate resources to achieve complex task goals.",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_desc",
|
||||
),
|
||||
examples=DynConfig(
|
||||
"""
|
||||
user:help me build a sales report summarizing our key metrics and trends
|
||||
assistants:[
|
||||
{{
|
||||
"serial_number": "1",
|
||||
"agent": "DataScientist",
|
||||
"content": "Retrieve total sales, average sales, and number of transactions grouped by "product_category"'.",
|
||||
"rely": ""
|
||||
}},
|
||||
{{
|
||||
"serial_number": "2",
|
||||
"agent": "DataScientist",
|
||||
"content": "Retrieve monthly sales and transaction number trends.",
|
||||
"rely": ""
|
||||
}},
|
||||
{{
|
||||
"serial_number": "3",
|
||||
"agent": "Reporter",
|
||||
"content": "Integrate analytical data into the format required to build sales reports.",
|
||||
"rely": "1,2"
|
||||
}}
|
||||
]""", # noqa: E501
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_planner_agent_profile_examples",
|
||||
),
|
||||
)
|
||||
_goal_zh: str = (
|
||||
"理解下面每个智能体(agent)和他们的能力,使用给出的资源,通过协调智能体来解决"
|
||||
"用户问题。 请发挥你LLM的知识和理解能力,理解用户问题的意图和目标,生成一个可以在没有用户帮助"
|
||||
"下,由智能体协作完成目标的任务计划。"
|
||||
)
|
||||
_expand_prompt_zh: str = "可用智能体(agent):\n {{ agents }}"
|
||||
|
||||
_constraints_zh: List[str] = [
|
||||
"任务计划的每个步骤都应该是为了推进解决用户目标而存在,不要生成无意义的任务步骤,确保每个步骤内目标明确内容完整。",
|
||||
"关注任务计划每个步骤的依赖关系和逻辑,被依赖步骤要考虑被依赖的数据,是否能基于当前目标得到,如果不能请在目标中提示要生成被依赖数据。",
|
||||
"每个步骤都是一个独立可完成的目标,一定要确保逻辑和信息完整,不要出现类似:"
|
||||
"'Analyze the retrieved issues data'这样目标不明确,不知道具体要分析啥内容的步骤",
|
||||
"请确保只使用上面提到的智能体,并且可以只使用其中需要的部分,严格根据描述能力和限制分配给合适的步骤,每个智能体都可以重复使用。",
|
||||
"根据用户目标的实际需要使用提供的资源来协助生成计划步骤,不要使用不需要的资源。",
|
||||
"每个步骤最好只使用一种资源完成一个子目标,如果当前目标可以分解为同类型的多个子任务,可以生成相互不依赖的并行任务。",
|
||||
"数据资源可以被合适的智能体加载使用,不用考虑数据资源的加载链接问题",
|
||||
"尽量合并有顺序依赖的连续相同步骤,如果用户目标无拆分必要,可以生成内容为用户目标的单步任务。",
|
||||
"仔细检查计划,确保计划完整的包含了用户问题所涉及的所有信息,并且最终能完成目标,确认每个步骤是否包含了需要用到的资源信息,如URL、资源名等. ",
|
||||
]
|
||||
_desc_zh: str = "你是一个任务规划专家!可以协调智能体,分配资源完成复杂的任务目标。"
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Create a new PlannerAgent instance."""
|
||||
super().__init__(**kwargs)
|
||||
self._init_actions([PlanAction])
|
||||
|
||||
def _init_reply_message(self, received_message: AgentMessage):
|
||||
reply_message = super()._init_reply_message(received_message)
|
||||
reply_message.context = {
|
||||
"agents": "\n".join([f"- {item.role}:{item.desc}" for item in self.agents]),
|
||||
}
|
||||
return reply_message
|
||||
|
||||
def bind_agents(self, agents: List[ConversableAgent]) -> ConversableAgent:
|
||||
"""Bind the agents to the planner agent."""
|
||||
self.agents = agents
|
||||
for agent in self.agents:
|
||||
if agent.resources and len(agent.resources) > 0:
|
||||
self.resources.extend(agent.resources)
|
||||
return self
|
||||
|
||||
def prepare_act_param(self) -> Dict[str, Any]:
|
||||
"""Prepare the parameters for the act method."""
|
||||
return {
|
||||
"context": self.not_null_agent_context,
|
||||
"plans_memory": self.memory.plans_memory,
|
||||
}
|
312
dbgpt/agent/core/plan/team_auto_plan.py
Normal file
312
dbgpt/agent/core/plan/team_auto_plan.py
Normal file
@@ -0,0 +1,312 @@
|
||||
"""Auto plan chat manager agent."""
|
||||
|
||||
import logging
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
from dbgpt.core.interface.message import ModelMessageRoleType
|
||||
|
||||
from ..action.base import ActionOutput
|
||||
from ..agent import Agent, AgentMessage
|
||||
from ..agent_manage import mentioned_agents, participant_roles
|
||||
from ..base_agent import ConversableAgent
|
||||
from ..base_team import ManagerAgent
|
||||
from ..memory.gpts.base import GptsPlan
|
||||
from ..plan.planner_agent import PlannerAgent
|
||||
from ..profile import DynConfig, ProfileConfig
|
||||
from ..schema import Status
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AutoPlanChatManager(ManagerAgent):
|
||||
"""A chat manager agent that can manage a team chat of multiple agents."""
|
||||
|
||||
profile: ProfileConfig = ProfileConfig(
|
||||
name=DynConfig(
|
||||
"AutoPlanChatManager",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_team_auto_plan_profile_name",
|
||||
),
|
||||
role=DynConfig(
|
||||
"PlanManager",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_team_auto_plan_profile_role",
|
||||
),
|
||||
goal=DynConfig(
|
||||
"Advance the task plan generated by the planning agent. If the plan "
|
||||
"does not pre-allocate an agent, it needs to be coordinated with the "
|
||||
"appropriate agent to complete.",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_team_auto_plan_profile_goal",
|
||||
),
|
||||
desc=DynConfig(
|
||||
"Advance the task plan generated by the planning agent.",
|
||||
category="agent",
|
||||
key="dbgpt_agent_plan_team_auto_plan_profile_desc",
|
||||
),
|
||||
)
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Create a new AutoPlanChatManager instance."""
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def process_rely_message(
|
||||
self, conv_id: str, now_plan: GptsPlan, speaker: Agent
|
||||
):
|
||||
"""Process the dependent message."""
|
||||
rely_prompt = None
|
||||
rely_messages: List[Dict] = []
|
||||
|
||||
if now_plan.rely and len(now_plan.rely) > 0:
|
||||
rely_tasks_list = now_plan.rely.split(",")
|
||||
rely_tasks_list_int = [int(i) for i in rely_tasks_list]
|
||||
rely_tasks = self.memory.plans_memory.get_by_conv_id_and_num(
|
||||
conv_id, rely_tasks_list_int
|
||||
)
|
||||
if rely_tasks:
|
||||
rely_prompt = (
|
||||
"Read the result data of the dependent steps in the above"
|
||||
" historical message to complete the current goal:"
|
||||
)
|
||||
for rely_task in rely_tasks:
|
||||
rely_messages.append(
|
||||
{
|
||||
"content": rely_task.sub_task_content,
|
||||
"role": ModelMessageRoleType.HUMAN,
|
||||
"name": rely_task.sub_task_agent,
|
||||
}
|
||||
)
|
||||
rely_messages.append(
|
||||
{
|
||||
"content": rely_task.result,
|
||||
"role": ModelMessageRoleType.AI,
|
||||
"name": rely_task.sub_task_agent,
|
||||
}
|
||||
)
|
||||
return rely_prompt, rely_messages
|
||||
|
||||
def select_speaker_msg(self, agents: List[Agent]) -> str:
|
||||
"""Return the message for selecting the next speaker."""
|
||||
agent_names = [agent.name for agent in agents]
|
||||
return (
|
||||
"You are in a role play game. The following roles are available:\n"
|
||||
f" {participant_roles(agents)}.\n"
|
||||
" Read the following conversation.\n"
|
||||
f" Then select the next role from {agent_names} to play.\n"
|
||||
" The role can be selected repeatedly.Only return the role."
|
||||
)
|
||||
|
||||
async def select_speaker(
|
||||
self,
|
||||
last_speaker: Agent,
|
||||
selector: Agent,
|
||||
now_goal_context: Optional[str] = None,
|
||||
pre_allocated: Optional[str] = None,
|
||||
) -> Tuple[Agent, Optional[str]]:
|
||||
"""Select the next speaker."""
|
||||
agents = self.agents
|
||||
|
||||
if pre_allocated:
|
||||
# Preselect speakers
|
||||
logger.info(f"Preselect speakers:{pre_allocated}")
|
||||
name = pre_allocated
|
||||
model = None
|
||||
else:
|
||||
# auto speaker selection
|
||||
# TODO selector a_thinking It has been overwritten and cannot be used.
|
||||
agent_names = [agent.name for agent in agents]
|
||||
fina_name, model = await selector.thinking(
|
||||
messages=[
|
||||
AgentMessage(
|
||||
role=ModelMessageRoleType.HUMAN,
|
||||
content="Read and understand the following task content and"
|
||||
" assign the appropriate role to complete the task.\n"
|
||||
f"Task content: {now_goal_context},\n"
|
||||
f"Select the role from: {agent_names},\n"
|
||||
f"Please only return the role, such as: {agents[0].name}",
|
||||
)
|
||||
],
|
||||
prompt=self.select_speaker_msg(agents),
|
||||
)
|
||||
if not fina_name:
|
||||
raise ValueError("Unable to select next speaker!")
|
||||
else:
|
||||
name = fina_name
|
||||
|
||||
# If exactly one agent is mentioned, use it. Otherwise, leave the OAI response
|
||||
# unmodified
|
||||
mentions = mentioned_agents(name, agents)
|
||||
if len(mentions) == 1:
|
||||
name = next(iter(mentions))
|
||||
else:
|
||||
logger.warning(
|
||||
"GroupChat select_speaker failed to resolve the next speaker's name. "
|
||||
f"This is because the speaker selection OAI call returned:\n{name}"
|
||||
)
|
||||
|
||||
# Return the result
|
||||
try:
|
||||
return self.agent_by_name(name), model
|
||||
except Exception as e:
|
||||
logger.exception(f"auto select speaker failed!{str(e)}")
|
||||
raise ValueError("Unable to select next speaker!")
|
||||
|
||||
async def act(
|
||||
self,
|
||||
message: Optional[str],
|
||||
sender: Optional[Agent] = None,
|
||||
reviewer: Optional[Agent] = None,
|
||||
**kwargs,
|
||||
) -> Optional[ActionOutput]:
|
||||
"""Perform an action based on the received message."""
|
||||
if not sender:
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content="The sender cannot be empty!",
|
||||
)
|
||||
speaker: Agent = sender
|
||||
final_message = message
|
||||
for i in range(self.max_round):
|
||||
if not self.memory:
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content="The memory cannot be empty!",
|
||||
)
|
||||
plans = self.memory.plans_memory.get_by_conv_id(
|
||||
self.not_null_agent_context.conv_id
|
||||
)
|
||||
|
||||
if not plans or len(plans) <= 0:
|
||||
if i > 3:
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content="Retrying 3 times based on current application "
|
||||
"resources still fails to build a valid plan!",
|
||||
)
|
||||
planner: ConversableAgent = (
|
||||
await PlannerAgent()
|
||||
.bind(self.memory)
|
||||
.bind(self.agent_context)
|
||||
.bind(self.llm_config)
|
||||
.bind(self.resource_loader)
|
||||
.bind_agents(self.agents)
|
||||
.build()
|
||||
)
|
||||
|
||||
plan_message = await planner.generate_reply(
|
||||
received_message=AgentMessage.from_llm_message(
|
||||
{"content": message}
|
||||
),
|
||||
sender=self,
|
||||
reviewer=reviewer,
|
||||
)
|
||||
await planner.send(
|
||||
message=plan_message, recipient=self, request_reply=False
|
||||
)
|
||||
else:
|
||||
todo_plans = [
|
||||
plan
|
||||
for plan in plans
|
||||
if plan.state in [Status.TODO.value, Status.RETRYING.value]
|
||||
]
|
||||
if not todo_plans or len(todo_plans) <= 0:
|
||||
# The plan has been fully executed and a success message is sent
|
||||
# to the user.
|
||||
# complete
|
||||
return ActionOutput(
|
||||
is_exe_success=True,
|
||||
content=final_message, # work results message
|
||||
)
|
||||
else:
|
||||
try:
|
||||
now_plan: GptsPlan = todo_plans[0]
|
||||
current_goal_message = AgentMessage(
|
||||
content=now_plan.sub_task_content,
|
||||
current_goal=now_plan.sub_task_content,
|
||||
context={
|
||||
"plan_task": now_plan.sub_task_content,
|
||||
"plan_task_num": now_plan.sub_task_num,
|
||||
},
|
||||
)
|
||||
# select the next speaker
|
||||
speaker, model = await self.select_speaker(
|
||||
speaker,
|
||||
self,
|
||||
now_plan.sub_task_content,
|
||||
now_plan.sub_task_agent,
|
||||
)
|
||||
# Tell the speaker the dependent history information
|
||||
rely_prompt, rely_messages = await self.process_rely_message(
|
||||
conv_id=self.not_null_agent_context.conv_id,
|
||||
now_plan=now_plan,
|
||||
speaker=speaker,
|
||||
)
|
||||
if rely_prompt:
|
||||
current_goal_message.content = (
|
||||
rely_prompt + current_goal_message.content
|
||||
)
|
||||
|
||||
await self.send(
|
||||
message=current_goal_message,
|
||||
recipient=speaker,
|
||||
reviewer=reviewer,
|
||||
request_reply=False,
|
||||
)
|
||||
agent_reply_message = await speaker.generate_reply(
|
||||
received_message=current_goal_message,
|
||||
sender=self,
|
||||
reviewer=reviewer,
|
||||
rely_messages=AgentMessage.from_messages(rely_messages),
|
||||
)
|
||||
is_success = agent_reply_message.success
|
||||
reply_message = agent_reply_message.to_llm_message()
|
||||
await speaker.send(
|
||||
agent_reply_message, self, reviewer, request_reply=False
|
||||
)
|
||||
|
||||
plan_result = ""
|
||||
final_message = reply_message["content"]
|
||||
if is_success:
|
||||
if reply_message:
|
||||
action_report = agent_reply_message.action_report
|
||||
if action_report:
|
||||
plan_result = action_report.get("content", "")
|
||||
final_message = action_report["view"]
|
||||
|
||||
# The current planned Agent generation verification is
|
||||
# successful
|
||||
# Plan executed successfully
|
||||
self.memory.plans_memory.complete_task(
|
||||
self.not_null_agent_context.conv_id,
|
||||
now_plan.sub_task_num,
|
||||
plan_result,
|
||||
)
|
||||
else:
|
||||
plan_result = reply_message["content"]
|
||||
self.memory.plans_memory.update_task(
|
||||
self.not_null_agent_context.conv_id,
|
||||
now_plan.sub_task_num,
|
||||
Status.FAILED.value,
|
||||
now_plan.retry_times + 1,
|
||||
speaker.name,
|
||||
"",
|
||||
plan_result,
|
||||
)
|
||||
return ActionOutput(
|
||||
is_exe_success=False, content=plan_result
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(
|
||||
f"An exception was encountered during the execution of the"
|
||||
f" current plan step.{str(e)}"
|
||||
)
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content=f"An exception was encountered during the execution"
|
||||
f" of the current plan step.{str(e)}",
|
||||
)
|
||||
return ActionOutput(
|
||||
is_exe_success=False,
|
||||
content=f"Maximum number of dialogue rounds exceeded.{self.max_round}",
|
||||
)
|
Reference in New Issue
Block a user