refactor(agent): Agent modular refactoring (#1487)

This commit is contained in:
Fangyin Cheng
2024-05-07 09:45:26 +08:00
committed by GitHub
parent 2a418f91e8
commit 863b5404dd
86 changed files with 4513 additions and 967 deletions

View File

@@ -1,10 +1,53 @@
"""Utility functions for calculating similarity."""
from typing import TYPE_CHECKING, Any, Sequence
from typing import TYPE_CHECKING, Any, List, Sequence
if TYPE_CHECKING:
from dbgpt.core.interface.embeddings import Embeddings
def cosine_similarity(embedding1: List[float], embedding2: List[float]) -> float:
"""Calculate the cosine similarity between two vectors.
Args:
embedding1(List[float]): The first vector.
embedding2(List[float]): The second vector.
Returns:
float: The cosine similarity.
"""
try:
import numpy as np
except ImportError:
raise ImportError("numpy is required for SimilarityMetric")
dot_product = np.dot(embedding1, embedding2)
norm1 = np.linalg.norm(embedding1)
norm2 = np.linalg.norm(embedding2)
similarity = dot_product / (norm1 * norm2)
return similarity
def sigmoid_function(x: float) -> float:
"""Calculate the sigmoid function.
The sigmoid function is defined as:
.. math::
f(x) = \\frac{1}{1 + e^{-x}}
It is used to map the input to a value between 0 and 1.
Args:
x(float): The input to the sigmoid function.
Returns:
float: The output of the sigmoid function.
"""
try:
import numpy as np
except ImportError:
raise ImportError("numpy is required for sigmoid_function")
return 1 / (1 + np.exp(-x))
def calculate_cosine_similarity(
embeddings: "Embeddings", prediction: str, contexts: Sequence[str]
) -> Any: