mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-10 21:39:33 +00:00
chore: Add pylint for storage (#1298)
This commit is contained in:
269
dbgpt/storage/cache/operators.py
vendored
Normal file
269
dbgpt/storage/cache/operators.py
vendored
Normal file
@@ -0,0 +1,269 @@
|
||||
"""Operators for processing model outputs with caching support."""
|
||||
import logging
|
||||
from typing import AsyncIterator, Dict, List, Optional, Union, cast
|
||||
|
||||
from dbgpt.core import ModelOutput, ModelRequest
|
||||
from dbgpt.core.awel import (
|
||||
BaseOperator,
|
||||
BranchFunc,
|
||||
BranchOperator,
|
||||
MapOperator,
|
||||
StreamifyAbsOperator,
|
||||
TransformStreamAbsOperator,
|
||||
)
|
||||
|
||||
from .llm_cache import LLMCacheClient, LLMCacheKey, LLMCacheValue
|
||||
from .manager import CacheManager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_LLM_MODEL_INPUT_VALUE_KEY = "llm_model_input_value"
|
||||
_LLM_MODEL_OUTPUT_CACHE_KEY = "llm_model_output_cache"
|
||||
|
||||
|
||||
class CachedModelStreamOperator(StreamifyAbsOperator[ModelRequest, ModelOutput]):
|
||||
"""Operator for streaming processing of model outputs with caching.
|
||||
|
||||
Args:
|
||||
cache_manager (CacheManager): The cache manager to handle caching operations.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Methods:
|
||||
streamify: Processes a stream of inputs with cache support, yielding model
|
||||
outputs.
|
||||
"""
|
||||
|
||||
def __init__(self, cache_manager: CacheManager, **kwargs) -> None:
|
||||
"""Create a new instance of CachedModelStreamOperator."""
|
||||
super().__init__(**kwargs)
|
||||
self._cache_manager = cache_manager
|
||||
self._client = LLMCacheClient(cache_manager)
|
||||
|
||||
async def streamify(self, input_value: ModelRequest):
|
||||
"""Process inputs as a stream with cache support and yield model outputs.
|
||||
|
||||
Args:
|
||||
input_value (ModelRequest): The input value for the model.
|
||||
|
||||
Returns:
|
||||
AsyncIterator[ModelOutput]: An asynchronous iterator of model outputs.
|
||||
"""
|
||||
cache_dict = _parse_cache_key_dict(input_value)
|
||||
llm_cache_key: LLMCacheKey = self._client.new_key(**cache_dict)
|
||||
llm_cache_value = await self._client.get(llm_cache_key)
|
||||
logger.info(f"llm_cache_value: {llm_cache_value}")
|
||||
if not llm_cache_value:
|
||||
raise ValueError(f"Cache value not found for key: {llm_cache_key}")
|
||||
outputs = cast(List[ModelOutput], llm_cache_value.get_value().output)
|
||||
for out in outputs:
|
||||
yield cast(ModelOutput, out)
|
||||
|
||||
|
||||
class CachedModelOperator(MapOperator[ModelRequest, ModelOutput]):
|
||||
"""Operator for map-based processing of model outputs with caching.
|
||||
|
||||
Args:
|
||||
cache_manager (CacheManager): Manager for caching operations.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Methods:
|
||||
map: Processes a single input with cache support and returns the model output.
|
||||
"""
|
||||
|
||||
def __init__(self, cache_manager: CacheManager, **kwargs) -> None:
|
||||
"""Create a new instance of CachedModelOperator."""
|
||||
super().__init__(**kwargs)
|
||||
self._cache_manager = cache_manager
|
||||
self._client = LLMCacheClient(cache_manager)
|
||||
|
||||
async def map(self, input_value: ModelRequest) -> ModelOutput:
|
||||
"""Process a single input with cache support and return the model output.
|
||||
|
||||
Args:
|
||||
input_value (ModelRequest): The input value for the model.
|
||||
|
||||
Returns:
|
||||
ModelOutput: The output from the model.
|
||||
"""
|
||||
cache_dict = _parse_cache_key_dict(input_value)
|
||||
llm_cache_key: LLMCacheKey = self._client.new_key(**cache_dict)
|
||||
llm_cache_value = await self._client.get(llm_cache_key)
|
||||
if not llm_cache_value:
|
||||
raise ValueError(f"Cache value not found for key: {llm_cache_key}")
|
||||
logger.info(f"llm_cache_value: {llm_cache_value}")
|
||||
return cast(ModelOutput, llm_cache_value.get_value().output)
|
||||
|
||||
|
||||
class ModelCacheBranchOperator(BranchOperator[ModelRequest, Dict]):
|
||||
"""Branch operator for model processing with cache support.
|
||||
|
||||
A branch operator that decides whether to use cached data or to process data using
|
||||
the model.
|
||||
|
||||
Args:
|
||||
cache_manager (CacheManager): The cache manager for managing cache operations.
|
||||
model_task_name (str): The name of the task to process data using the model.
|
||||
cache_task_name (str): The name of the task to process data using the cache.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cache_manager: CacheManager,
|
||||
model_task_name: str,
|
||||
cache_task_name: str,
|
||||
**kwargs,
|
||||
):
|
||||
"""Create a new instance of ModelCacheBranchOperator."""
|
||||
super().__init__(branches=None, **kwargs)
|
||||
self._cache_manager = cache_manager
|
||||
self._client = LLMCacheClient(cache_manager)
|
||||
self._model_task_name = model_task_name
|
||||
self._cache_task_name = cache_task_name
|
||||
|
||||
async def branches(
|
||||
self,
|
||||
) -> Dict[BranchFunc[ModelRequest], Union[BaseOperator, str]]:
|
||||
"""Branch logic based on cache availability.
|
||||
|
||||
Defines branch logic based on cache availability.
|
||||
|
||||
Returns:
|
||||
Dict[BranchFunc[Dict], Union[BaseOperator, str]]: A dictionary mapping
|
||||
branch functions to task names.
|
||||
"""
|
||||
|
||||
async def check_cache_true(input_value: ModelRequest) -> bool:
|
||||
# Check if the cache contains the result for the given input
|
||||
if input_value.context and not input_value.context.cache_enable:
|
||||
return False
|
||||
cache_dict = _parse_cache_key_dict(input_value)
|
||||
cache_key: LLMCacheKey = self._client.new_key(**cache_dict)
|
||||
cache_value = await self._client.get(cache_key)
|
||||
logger.debug(
|
||||
f"cache_key: {cache_key}, hash key: {hash(cache_key)}, cache_value: "
|
||||
f"{cache_value}"
|
||||
)
|
||||
await self.current_dag_context.save_to_share_data(
|
||||
_LLM_MODEL_INPUT_VALUE_KEY, cache_key, overwrite=True
|
||||
)
|
||||
return bool(cache_value)
|
||||
|
||||
async def check_cache_false(input_value: ModelRequest):
|
||||
# Inverse of check_cache_true
|
||||
return not await check_cache_true(input_value)
|
||||
|
||||
return {
|
||||
check_cache_true: self._cache_task_name,
|
||||
check_cache_false: self._model_task_name,
|
||||
}
|
||||
|
||||
|
||||
class ModelStreamSaveCacheOperator(
|
||||
TransformStreamAbsOperator[ModelOutput, ModelOutput]
|
||||
):
|
||||
"""An operator to save the stream of model outputs to cache.
|
||||
|
||||
Args:
|
||||
cache_manager (CacheManager): The cache manager for handling cache operations.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def __init__(self, cache_manager: CacheManager, **kwargs):
|
||||
"""Create a new instance of ModelStreamSaveCacheOperator."""
|
||||
self._cache_manager = cache_manager
|
||||
self._client = LLMCacheClient(cache_manager)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def transform_stream(self, input_value: AsyncIterator[ModelOutput]):
|
||||
"""Save the stream of model outputs to cache.
|
||||
|
||||
Transforms the input stream by saving the outputs to cache.
|
||||
|
||||
Args:
|
||||
input_value (AsyncIterator[ModelOutput]): An asynchronous iterator of model
|
||||
outputs.
|
||||
|
||||
Returns:
|
||||
AsyncIterator[ModelOutput]: The same input iterator, but the outputs are
|
||||
saved to cache.
|
||||
"""
|
||||
llm_cache_key: Optional[LLMCacheKey] = None
|
||||
outputs = []
|
||||
async for out in input_value:
|
||||
if not llm_cache_key:
|
||||
llm_cache_key = await self.current_dag_context.get_from_share_data(
|
||||
_LLM_MODEL_INPUT_VALUE_KEY
|
||||
)
|
||||
outputs.append(out)
|
||||
yield out
|
||||
if llm_cache_key and _is_success_model_output(outputs):
|
||||
llm_cache_value: LLMCacheValue = self._client.new_value(output=outputs)
|
||||
await self._client.set(llm_cache_key, llm_cache_value)
|
||||
|
||||
|
||||
class ModelSaveCacheOperator(MapOperator[ModelOutput, ModelOutput]):
|
||||
"""An operator to save a single model output to cache.
|
||||
|
||||
Args:
|
||||
cache_manager (CacheManager): The cache manager for handling cache operations.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def __init__(self, cache_manager: CacheManager, **kwargs):
|
||||
"""Create a new instance of ModelSaveCacheOperator."""
|
||||
self._cache_manager = cache_manager
|
||||
self._client = LLMCacheClient(cache_manager)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
async def map(self, input_value: ModelOutput) -> ModelOutput:
|
||||
"""Save model output to cache.
|
||||
|
||||
Args:
|
||||
input_value (ModelOutput): The output from the model to be cached.
|
||||
|
||||
Returns:
|
||||
ModelOutput: The same input model output.
|
||||
"""
|
||||
llm_cache_key: LLMCacheKey = await self.current_dag_context.get_from_share_data(
|
||||
_LLM_MODEL_INPUT_VALUE_KEY
|
||||
)
|
||||
llm_cache_value: LLMCacheValue = self._client.new_value(output=input_value)
|
||||
if llm_cache_key and _is_success_model_output(input_value):
|
||||
await self._client.set(llm_cache_key, llm_cache_value)
|
||||
return input_value
|
||||
|
||||
|
||||
def _parse_cache_key_dict(input_value: ModelRequest) -> Dict:
|
||||
"""Parse and extract relevant fields from input to form a cache key dictionary.
|
||||
|
||||
Args:
|
||||
input_value (Dict): The input dictionary containing model and prompt parameters.
|
||||
|
||||
Returns:
|
||||
Dict: A dictionary used for generating cache keys.
|
||||
"""
|
||||
prompt: str = input_value.messages_to_string().strip()
|
||||
return {
|
||||
"prompt": prompt,
|
||||
"model_name": input_value.model,
|
||||
"temperature": input_value.temperature,
|
||||
"max_new_tokens": input_value.max_new_tokens,
|
||||
# "top_p": input_value.get("top_p", "1.0"),
|
||||
# TODO pass model_type
|
||||
# "model_type": input_value.get("model_type", "huggingface"),
|
||||
}
|
||||
|
||||
|
||||
def _is_success_model_output(out: Union[Dict, ModelOutput, List[ModelOutput]]) -> bool:
|
||||
if not out:
|
||||
return False
|
||||
if isinstance(out, list):
|
||||
# check last model output
|
||||
out = out[-1]
|
||||
error_code = 0
|
||||
if isinstance(out, ModelOutput):
|
||||
error_code = out.error_code
|
||||
else:
|
||||
error_code = int(out.get("error_code", 0))
|
||||
return error_code == 0
|
Reference in New Issue
Block a user