mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-11-04 01:17:52 +00:00
feat(rag): Support RAG SDK (#1322)
This commit is contained in:
75
dbgpt/rag/assembler/base.py
Normal file
75
dbgpt/rag/assembler/base.py
Normal file
@@ -0,0 +1,75 @@
|
||||
"""Base Assembler."""
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from dbgpt.core import Chunk
|
||||
from dbgpt.util.tracer import root_tracer
|
||||
|
||||
from ..chunk_manager import ChunkManager, ChunkParameters
|
||||
from ..extractor.base import Extractor
|
||||
from ..knowledge.base import Knowledge
|
||||
from ..retriever.base import BaseRetriever
|
||||
|
||||
|
||||
class BaseAssembler(ABC):
|
||||
"""Base Assembler."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
knowledge: Knowledge,
|
||||
chunk_parameters: Optional[ChunkParameters] = None,
|
||||
extractor: Optional[Extractor] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize with Assembler arguments.
|
||||
|
||||
Args:
|
||||
knowledge(Knowledge): Knowledge datasource.
|
||||
chunk_parameters: (Optional[ChunkParameters]) ChunkManager to use for
|
||||
chunking.
|
||||
extractor(Optional[Extractor]): Extractor to use for summarization.
|
||||
"""
|
||||
self._knowledge = knowledge
|
||||
self._chunk_parameters = chunk_parameters or ChunkParameters()
|
||||
self._extractor = extractor
|
||||
self._chunk_manager = ChunkManager(
|
||||
knowledge=self._knowledge, chunk_parameter=self._chunk_parameters
|
||||
)
|
||||
self._chunks: List[Chunk] = []
|
||||
metadata = {
|
||||
"knowledge_cls": self._knowledge.__class__.__name__
|
||||
if self._knowledge
|
||||
else None,
|
||||
"knowledge_type": self._knowledge.type().value if self._knowledge else None,
|
||||
"path": self._knowledge._path
|
||||
if self._knowledge and hasattr(self._knowledge, "_path")
|
||||
else None,
|
||||
"chunk_parameters": self._chunk_parameters.dict(),
|
||||
}
|
||||
with root_tracer.start_span("BaseAssembler.load_knowledge", metadata=metadata):
|
||||
self.load_knowledge(self._knowledge)
|
||||
|
||||
def load_knowledge(self, knowledge: Optional[Knowledge] = None) -> None:
|
||||
"""Load knowledge Pipeline."""
|
||||
if not knowledge:
|
||||
raise ValueError("knowledge must be provided.")
|
||||
with root_tracer.start_span("BaseAssembler.knowledge.load"):
|
||||
documents = knowledge.load()
|
||||
with root_tracer.start_span("BaseAssembler.chunk_manager.split"):
|
||||
self._chunks = self._chunk_manager.split(documents)
|
||||
|
||||
@abstractmethod
|
||||
def as_retriever(self, **kwargs: Any) -> BaseRetriever:
|
||||
"""Return a retriever."""
|
||||
|
||||
@abstractmethod
|
||||
def persist(self) -> List[str]:
|
||||
"""Persist chunks.
|
||||
|
||||
Returns:
|
||||
List[str]: List of persisted chunk ids.
|
||||
"""
|
||||
|
||||
def get_chunks(self) -> List[Chunk]:
|
||||
"""Return chunks."""
|
||||
return self._chunks
|
||||
Reference in New Issue
Block a user