mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-05 02:51:07 +00:00
feat: Knowledge QA support SQLite
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
ARG BASE_IMAGE="db-gpt:latest"
|
||||
ARG BASE_IMAGE="eosphorosai/dbgpt:latest"
|
||||
|
||||
FROM ${BASE_IMAGE}
|
||||
|
||||
@@ -25,6 +25,6 @@ ENV LOCAL_DB_PASSWORD="$MYSQL_ROOT_PASSWORD"
|
||||
RUN cp /app/assets/schema/knowledge_management.sql /docker-entrypoint-initdb.d/
|
||||
|
||||
COPY docker/allinone/allinone-entrypoint.sh /usr/local/bin/allinone-entrypoint.sh
|
||||
COPY docker/examples/sqls/ /docker-entrypoint-initdb.d/
|
||||
COPY docker/examples/sqls/*_mysql.sql /docker-entrypoint-initdb.d/
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/allinone-entrypoint.sh"]
|
@@ -4,6 +4,6 @@ SCRIPT_LOCATION=$0
|
||||
cd "$(dirname "$SCRIPT_LOCATION")"
|
||||
WORK_DIR=$(pwd)
|
||||
|
||||
IMAGE_NAME="db-gpt-allinone"
|
||||
IMAGE_NAME="eosphorosai/dbgpt-allinone"
|
||||
|
||||
docker build -f Dockerfile -t $IMAGE_NAME $WORK_DIR/../../
|
@@ -1,6 +1,6 @@
|
||||
#!/bin/bash
|
||||
|
||||
docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
docker run --gpus all -d -p 3306:3306 \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_HOST=127.0.0.1 \
|
||||
-e LOCAL_DB_PASSWORD=aa123456 \
|
||||
@@ -9,5 +9,5 @@ docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name db-gpt-allinone \
|
||||
db-gpt-allinone
|
||||
--name dbgpt-allinone \
|
||||
eosphorosai/dbgpt-allinone
|
@@ -4,7 +4,7 @@
|
||||
PROXY_API_KEY="$PROXY_API_KEY"
|
||||
PROXY_SERVER_URL="${PROXY_SERVER_URL-'https://api.openai.com/v1/chat/completions'}"
|
||||
|
||||
docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
docker run --gpus all -d -p 3306:3306 \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_HOST=127.0.0.1 \
|
||||
-e LOCAL_DB_PASSWORD=aa123456 \
|
||||
@@ -15,5 +15,5 @@ docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name db-gpt-allinone \
|
||||
db-gpt-allinone
|
||||
--name dbgpt-allinone \
|
||||
eosphorosai/dbgpt-allinone
|
@@ -45,4 +45,14 @@ RUN (if [ "${BUILD_LOCAL_CODE}" = "true" ]; \
|
||||
else rm -rf /tmp/app; \
|
||||
fi;)
|
||||
|
||||
EXPOSE 5000
|
||||
ARG LOAD_EXAMPLES="true"
|
||||
|
||||
RUN (if [ "${LOAD_EXAMPLES}" = "true" ]; \
|
||||
then mkdir -p /app/pilot/data && sqlite3 /app/pilot/data/default_sqlite.db < /app/docker/examples/sqls/case_1_student_manager_sqlite.sql \
|
||||
&& sqlite3 /app/pilot/data/default_sqlite.db < /app/docker/examples/sqls/case_2_ecom_sqlite.sql \
|
||||
&& sqlite3 /app/pilot/data/default_sqlite.db < /app/docker/examples/sqls/test_case_info_sqlite.sql; \
|
||||
fi;)
|
||||
|
||||
EXPOSE 5000
|
||||
|
||||
CMD ["python3", "pilot/server/dbgpt_server.py"]
|
@@ -5,12 +5,13 @@ cd "$(dirname "$SCRIPT_LOCATION")"
|
||||
WORK_DIR=$(pwd)
|
||||
|
||||
BASE_IMAGE="nvidia/cuda:11.8.0-devel-ubuntu22.04"
|
||||
IMAGE_NAME="db-gpt"
|
||||
IMAGE_NAME="eosphorosai/dbgpt"
|
||||
# zh: https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
PIP_INDEX_URL="https://pypi.org/simple"
|
||||
# en or zh
|
||||
LANGUAGE="en"
|
||||
BUILD_LOCAL_CODE="false"
|
||||
LOAD_EXAMPLES="true"
|
||||
|
||||
usage () {
|
||||
echo "USAGE: $0 [--base-image nvidia/cuda:11.8.0-devel-ubuntu22.04] [--image-name db-gpt]"
|
||||
@@ -19,6 +20,7 @@ usage () {
|
||||
echo " [-i|--pip-index-url pip index url] Pip index url, default: https://pypi.org/simple"
|
||||
echo " [--language en or zh] You language, default: en"
|
||||
echo " [--build-local-code true or false] Whether to use the local project code to package the image, default: false"
|
||||
echo " [--load-examples true or false] Whether to load examples to default database default: true"
|
||||
echo " [-h|--help] Usage message"
|
||||
}
|
||||
|
||||
@@ -50,6 +52,11 @@ while [[ $# -gt 0 ]]; do
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
--load-examples)
|
||||
LOAD_EXAMPLES="$2"
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-h|--help)
|
||||
help="true"
|
||||
shift
|
||||
@@ -71,5 +78,6 @@ docker build \
|
||||
--build-arg PIP_INDEX_URL=$PIP_INDEX_URL \
|
||||
--build-arg LANGUAGE=$LANGUAGE \
|
||||
--build-arg BUILD_LOCAL_CODE=$BUILD_LOCAL_CODE \
|
||||
--build-arg LOAD_EXAMPLES=$LOAD_EXAMPLES \
|
||||
-f Dockerfile \
|
||||
-t $IMAGE_NAME $WORK_DIR/../../
|
||||
|
12
docker/base/run_sqlite.sh
Executable file
12
docker/base/run_sqlite.sh
Executable file
@@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
|
||||
docker run --gpus all -d \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_TYPE=sqlite \
|
||||
-e LOCAL_DB_PATH=data/default_sqlite.db \
|
||||
-e LLM_MODEL=vicuna-13b-v1.5 \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name dbgpt \
|
||||
eosphorosai/dbgpt
|
18
docker/base/run_sqlite_proxyllm.sh
Executable file
18
docker/base/run_sqlite_proxyllm.sh
Executable file
@@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Your api key
|
||||
PROXY_API_KEY="$PROXY_API_KEY"
|
||||
PROXY_SERVER_URL="${PROXY_SERVER_URL-'https://api.openai.com/v1/chat/completions'}"
|
||||
|
||||
docker run --gpus all -d \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_TYPE=sqlite \
|
||||
-e LOCAL_DB_PATH=data/default_sqlite.db \
|
||||
-e LLM_MODEL=proxyllm \
|
||||
-e PROXY_API_KEY=$PROXY_API_KEY \
|
||||
-e PROXY_SERVER_URL=$PROXY_SERVER_URL \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name dbgpt \
|
||||
eosphorosai/dbgpt
|
59
docker/examples/sqls/case_1_student_manager_sqlite.sql
Normal file
59
docker/examples/sqls/case_1_student_manager_sqlite.sql
Normal file
@@ -0,0 +1,59 @@
|
||||
CREATE TABLE students (
|
||||
student_id INTEGER PRIMARY KEY,
|
||||
student_name VARCHAR(100),
|
||||
major VARCHAR(100),
|
||||
year_of_enrollment INTEGER,
|
||||
student_age INTEGER
|
||||
);
|
||||
|
||||
CREATE TABLE courses (
|
||||
course_id INTEGER PRIMARY KEY,
|
||||
course_name VARCHAR(100),
|
||||
credit REAL
|
||||
);
|
||||
|
||||
CREATE TABLE scores (
|
||||
student_id INTEGER,
|
||||
course_id INTEGER,
|
||||
score INTEGER,
|
||||
semester VARCHAR(50),
|
||||
PRIMARY KEY (student_id, course_id),
|
||||
FOREIGN KEY (student_id) REFERENCES students(student_id),
|
||||
FOREIGN KEY (course_id) REFERENCES courses(course_id)
|
||||
);
|
||||
|
||||
INSERT INTO students (student_id, student_name, major, year_of_enrollment, student_age) VALUES
|
||||
(1, '张三', '计算机科学', 2020, 20),
|
||||
(2, '李四', '计算机科学', 2021, 19),
|
||||
(3, '王五', '物理学', 2020, 21),
|
||||
(4, '赵六', '数学', 2021, 19),
|
||||
(5, '周七', '计算机科学', 2022, 18),
|
||||
(6, '吴八', '物理学', 2020, 21),
|
||||
(7, '郑九', '数学', 2021, 19),
|
||||
(8, '孙十', '计算机科学', 2022, 18),
|
||||
(9, '刘十一', '物理学', 2020, 21),
|
||||
(10, '陈十二', '数学', 2021, 19);
|
||||
|
||||
INSERT INTO courses (course_id, course_name, credit) VALUES
|
||||
(1, '计算机基础', 3),
|
||||
(2, '数据结构', 4),
|
||||
(3, '高等物理', 3),
|
||||
(4, '线性代数', 4),
|
||||
(5, '微积分', 5),
|
||||
(6, '编程语言', 4),
|
||||
(7, '量子力学', 3),
|
||||
(8, '概率论', 4),
|
||||
(9, '数据库系统', 4),
|
||||
(10, '计算机网络', 4);
|
||||
|
||||
INSERT INTO scores (student_id, course_id, score, semester) VALUES
|
||||
(1, 1, 90, '2020年秋季'),
|
||||
(1, 2, 85, '2021年春季'),
|
||||
(2, 1, 88, '2021年秋季'),
|
||||
(2, 2, 90, '2022年春季'),
|
||||
(3, 3, 92, '2020年秋季'),
|
||||
(3, 4, 85, '2021年春季'),
|
||||
(4, 3, 88, '2021年秋季'),
|
||||
(4, 4, 86, '2022年春季'),
|
||||
(5, 1, 90, '2022年秋季'),
|
||||
(5, 2, 87, '2023年春季');
|
59
docker/examples/sqls/case_2_ecom_sqlite.sql
Normal file
59
docker/examples/sqls/case_2_ecom_sqlite.sql
Normal file
@@ -0,0 +1,59 @@
|
||||
CREATE TABLE users (
|
||||
user_id INTEGER PRIMARY KEY,
|
||||
user_name VARCHAR(100),
|
||||
user_email VARCHAR(100),
|
||||
registration_date DATE,
|
||||
user_country VARCHAR(100)
|
||||
);
|
||||
|
||||
CREATE TABLE products (
|
||||
product_id INTEGER PRIMARY KEY,
|
||||
product_name VARCHAR(100),
|
||||
product_price REAL
|
||||
);
|
||||
|
||||
CREATE TABLE orders (
|
||||
order_id INTEGER PRIMARY KEY,
|
||||
user_id INTEGER,
|
||||
product_id INTEGER,
|
||||
quantity INTEGER,
|
||||
order_date DATE,
|
||||
FOREIGN KEY (user_id) REFERENCES users(user_id),
|
||||
FOREIGN KEY (product_id) REFERENCES products(product_id)
|
||||
);
|
||||
|
||||
INSERT INTO users (user_id, user_name, user_email, registration_date, user_country) VALUES
|
||||
(1, 'John', 'john@gmail.com', '2020-01-01', 'USA'),
|
||||
(2, 'Mary', 'mary@gmail.com', '2021-01-01', 'UK'),
|
||||
(3, 'Bob', 'bob@gmail.com', '2020-01-01', 'USA'),
|
||||
(4, 'Alice', 'alice@gmail.com', '2021-01-01', 'UK'),
|
||||
(5, 'Charlie', 'charlie@gmail.com', '2020-01-01', 'USA'),
|
||||
(6, 'David', 'david@gmail.com', '2021-01-01', 'UK'),
|
||||
(7, 'Eve', 'eve@gmail.com', '2020-01-01', 'USA'),
|
||||
(8, 'Frank', 'frank@gmail.com', '2021-01-01', 'UK'),
|
||||
(9, 'Grace', 'grace@gmail.com', '2020-01-01', 'USA'),
|
||||
(10, 'Helen', 'helen@gmail.com', '2021-01-01', 'UK');
|
||||
|
||||
INSERT INTO products (product_id, product_name, product_price) VALUES
|
||||
(1, 'iPhone', 699),
|
||||
(2, 'Samsung Galaxy', 599),
|
||||
(3, 'iPad', 329),
|
||||
(4, 'Macbook', 1299),
|
||||
(5, 'Apple Watch', 399),
|
||||
(6, 'AirPods', 159),
|
||||
(7, 'Echo', 99),
|
||||
(8, 'Kindle', 89),
|
||||
(9, 'Fire TV Stick', 39),
|
||||
(10, 'Echo Dot', 49);
|
||||
|
||||
INSERT INTO orders (order_id, user_id, product_id, quantity, order_date) VALUES
|
||||
(1, 1, 1, 1, '2022-01-01'),
|
||||
(2, 1, 2, 1, '2022-02-01'),
|
||||
(3, 2, 3, 2, '2022-03-01'),
|
||||
(4, 2, 4, 1, '2022-04-01'),
|
||||
(5, 3, 5, 2, '2022-05-01'),
|
||||
(6, 3, 6, 3, '2022-06-01'),
|
||||
(7, 4, 7, 2, '2022-07-01'),
|
||||
(8, 4, 8, 1, '2022-08-01'),
|
||||
(9, 5, 9, 2, '2022-09-01'),
|
||||
(10, 5, 10, 3, '2022-10-01');
|
17
docker/examples/sqls/test_case_info_sqlite.sql
Normal file
17
docker/examples/sqls/test_case_info_sqlite.sql
Normal file
@@ -0,0 +1,17 @@
|
||||
CREATE TABLE test_cases (
|
||||
case_id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
scenario_name VARCHAR(100),
|
||||
scenario_description TEXT,
|
||||
test_question VARCHAR(500),
|
||||
expected_sql TEXT,
|
||||
correct_output TEXT
|
||||
);
|
||||
|
||||
|
||||
INSERT INTO test_cases (scenario_name, scenario_description, test_question, expected_sql, correct_output) VALUES
|
||||
('学校管理系统', '测试SQL助手的联合查询,条件查询和排序功能', '查询所有学生的姓名,专业和成绩,按成绩降序排序', 'SELECT students.student_name, students.major, scores.score FROM students JOIN scores ON students.student_id = scores.student_id ORDER BY scores.score DESC;', '返回所有学生的姓名,专业和成绩,按成绩降序排序的结果'),
|
||||
('学校管理系统', '测试SQL助手的联合查询,条件查询和排序功能', '查询计算机科学专业的学生的平均成绩', 'SELECT AVG(scores.score) as avg_score FROM students JOIN scores ON students.student_id = scores.student_id WHERE students.major = ''计算机科学'';', '返回计算机科学专业学生的平均成绩'),
|
||||
('学校管理系统', '测试SQL助手的联合查询,条件查询和排序功能', '查询哪些学生在2023年秋季学期的课程学分总和超过15', 'SELECT students.student_name FROM students JOIN scores ON students.student_id = scores.student_id JOIN courses ON scores.course_id = courses.course_id WHERE scores.semester = ''2023年秋季'' GROUP BY students.student_id HAVING SUM(courses.credit) > 15;', '返回在2023年秋季学期的课程学分总和超过15的学生的姓名'),
|
||||
('电商系统', '测试SQL助手的数据聚合和分组功能', '查询每个用户的总订单数量', 'SELECT users.user_name, COUNT(orders.order_id) as order_count FROM users JOIN orders ON users.user_id = orders.user_id GROUP BY users.user_id;', '返回每个用户的总订单数量'),
|
||||
('电商系统', '测试SQL助手的数据聚合和分组功能', '查询每种商品的总销售额', 'SELECT products.product_name, SUM(products.product_price * orders.quantity) as total_sales FROM products JOIN orders ON products.product_id = orders.product_id GROUP BY products.product_id;', '返回每种商品的总销售额'),
|
||||
('电商系统', '测试SQL助手的数据聚合和分组功能', '查询2023年最受欢迎的商品(订单数量最多的商品)', 'SELECT products.product_name FROM products JOIN orders ON products.product_id = orders.product_id WHERE YEAR(orders.order_date) = 2023 GROUP BY products.product_id ORDER BY COUNT(orders.order_id) DESC LIMIT 1;', '返回2023年最受欢迎的商品(订单数量最多的商品)的名称');
|
Reference in New Issue
Block a user