mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-17 07:47:25 +00:00
feat: Knowledge QA support SQLite
This commit is contained in:
parent
0859f36a89
commit
8cea0b9a9f
@ -54,17 +54,16 @@ KNOWLEDGE_SEARCH_TOP_SIZE=5
|
||||
#*******************************************************************#
|
||||
#** DATABASE SETTINGS **#
|
||||
#*******************************************************************#
|
||||
### MYSQL database(Current default database)
|
||||
LOCAL_DB_TYPE=mysql
|
||||
LOCAL_DB_USER=root
|
||||
LOCAL_DB_PASSWORD=aa12345678
|
||||
LOCAL_DB_HOST=127.0.0.1
|
||||
LOCAL_DB_PORT=3306
|
||||
|
||||
### SQLite database (TODO: SQLite database will become the default database configuration when it is stable.)
|
||||
# LOCAL_DB_PATH=data/default_sqlite.db
|
||||
# LOCAL_DB_TYPE=sqlite
|
||||
### SQLite database (Current default database)
|
||||
LOCAL_DB_PATH=data/default_sqlite.db
|
||||
LOCAL_DB_TYPE=sqlite
|
||||
|
||||
### MYSQL database
|
||||
# LOCAL_DB_TYPE=mysql
|
||||
# LOCAL_DB_USER=root
|
||||
# LOCAL_DB_PASSWORD=aa12345678
|
||||
# LOCAL_DB_HOST=127.0.0.1
|
||||
# LOCAL_DB_PORT=3306
|
||||
|
||||
### MILVUS
|
||||
## MILVUS_ADDR - Milvus remote address (e.g. localhost:19530)
|
||||
|
@ -1,4 +1,4 @@
|
||||
ARG BASE_IMAGE="db-gpt:latest"
|
||||
ARG BASE_IMAGE="eosphorosai/dbgpt:latest"
|
||||
|
||||
FROM ${BASE_IMAGE}
|
||||
|
||||
@ -25,6 +25,6 @@ ENV LOCAL_DB_PASSWORD="$MYSQL_ROOT_PASSWORD"
|
||||
RUN cp /app/assets/schema/knowledge_management.sql /docker-entrypoint-initdb.d/
|
||||
|
||||
COPY docker/allinone/allinone-entrypoint.sh /usr/local/bin/allinone-entrypoint.sh
|
||||
COPY docker/examples/sqls/ /docker-entrypoint-initdb.d/
|
||||
COPY docker/examples/sqls/*_mysql.sql /docker-entrypoint-initdb.d/
|
||||
|
||||
ENTRYPOINT ["/usr/local/bin/allinone-entrypoint.sh"]
|
@ -4,6 +4,6 @@ SCRIPT_LOCATION=$0
|
||||
cd "$(dirname "$SCRIPT_LOCATION")"
|
||||
WORK_DIR=$(pwd)
|
||||
|
||||
IMAGE_NAME="db-gpt-allinone"
|
||||
IMAGE_NAME="eosphorosai/dbgpt-allinone"
|
||||
|
||||
docker build -f Dockerfile -t $IMAGE_NAME $WORK_DIR/../../
|
@ -1,6 +1,6 @@
|
||||
#!/bin/bash
|
||||
|
||||
docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
docker run --gpus all -d -p 3306:3306 \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_HOST=127.0.0.1 \
|
||||
-e LOCAL_DB_PASSWORD=aa123456 \
|
||||
@ -9,5 +9,5 @@ docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name db-gpt-allinone \
|
||||
db-gpt-allinone
|
||||
--name dbgpt-allinone \
|
||||
eosphorosai/dbgpt-allinone
|
@ -4,7 +4,7 @@
|
||||
PROXY_API_KEY="$PROXY_API_KEY"
|
||||
PROXY_SERVER_URL="${PROXY_SERVER_URL-'https://api.openai.com/v1/chat/completions'}"
|
||||
|
||||
docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
docker run --gpus all -d -p 3306:3306 \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_HOST=127.0.0.1 \
|
||||
-e LOCAL_DB_PASSWORD=aa123456 \
|
||||
@ -15,5 +15,5 @@ docker run --gpus "device=0" -d -p 3306:3306 \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name db-gpt-allinone \
|
||||
db-gpt-allinone
|
||||
--name dbgpt-allinone \
|
||||
eosphorosai/dbgpt-allinone
|
@ -45,4 +45,14 @@ RUN (if [ "${BUILD_LOCAL_CODE}" = "true" ]; \
|
||||
else rm -rf /tmp/app; \
|
||||
fi;)
|
||||
|
||||
ARG LOAD_EXAMPLES="true"
|
||||
|
||||
RUN (if [ "${LOAD_EXAMPLES}" = "true" ]; \
|
||||
then mkdir -p /app/pilot/data && sqlite3 /app/pilot/data/default_sqlite.db < /app/docker/examples/sqls/case_1_student_manager_sqlite.sql \
|
||||
&& sqlite3 /app/pilot/data/default_sqlite.db < /app/docker/examples/sqls/case_2_ecom_sqlite.sql \
|
||||
&& sqlite3 /app/pilot/data/default_sqlite.db < /app/docker/examples/sqls/test_case_info_sqlite.sql; \
|
||||
fi;)
|
||||
|
||||
EXPOSE 5000
|
||||
|
||||
CMD ["python3", "pilot/server/dbgpt_server.py"]
|
@ -5,12 +5,13 @@ cd "$(dirname "$SCRIPT_LOCATION")"
|
||||
WORK_DIR=$(pwd)
|
||||
|
||||
BASE_IMAGE="nvidia/cuda:11.8.0-devel-ubuntu22.04"
|
||||
IMAGE_NAME="db-gpt"
|
||||
IMAGE_NAME="eosphorosai/dbgpt"
|
||||
# zh: https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
PIP_INDEX_URL="https://pypi.org/simple"
|
||||
# en or zh
|
||||
LANGUAGE="en"
|
||||
BUILD_LOCAL_CODE="false"
|
||||
LOAD_EXAMPLES="true"
|
||||
|
||||
usage () {
|
||||
echo "USAGE: $0 [--base-image nvidia/cuda:11.8.0-devel-ubuntu22.04] [--image-name db-gpt]"
|
||||
@ -19,6 +20,7 @@ usage () {
|
||||
echo " [-i|--pip-index-url pip index url] Pip index url, default: https://pypi.org/simple"
|
||||
echo " [--language en or zh] You language, default: en"
|
||||
echo " [--build-local-code true or false] Whether to use the local project code to package the image, default: false"
|
||||
echo " [--load-examples true or false] Whether to load examples to default database default: true"
|
||||
echo " [-h|--help] Usage message"
|
||||
}
|
||||
|
||||
@ -50,6 +52,11 @@ while [[ $# -gt 0 ]]; do
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
--load-examples)
|
||||
LOAD_EXAMPLES="$2"
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-h|--help)
|
||||
help="true"
|
||||
shift
|
||||
@ -71,5 +78,6 @@ docker build \
|
||||
--build-arg PIP_INDEX_URL=$PIP_INDEX_URL \
|
||||
--build-arg LANGUAGE=$LANGUAGE \
|
||||
--build-arg BUILD_LOCAL_CODE=$BUILD_LOCAL_CODE \
|
||||
--build-arg LOAD_EXAMPLES=$LOAD_EXAMPLES \
|
||||
-f Dockerfile \
|
||||
-t $IMAGE_NAME $WORK_DIR/../../
|
||||
|
12
docker/base/run_sqlite.sh
Executable file
12
docker/base/run_sqlite.sh
Executable file
@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
|
||||
docker run --gpus all -d \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_TYPE=sqlite \
|
||||
-e LOCAL_DB_PATH=data/default_sqlite.db \
|
||||
-e LLM_MODEL=vicuna-13b-v1.5 \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name dbgpt \
|
||||
eosphorosai/dbgpt
|
18
docker/base/run_sqlite_proxyllm.sh
Executable file
18
docker/base/run_sqlite_proxyllm.sh
Executable file
@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Your api key
|
||||
PROXY_API_KEY="$PROXY_API_KEY"
|
||||
PROXY_SERVER_URL="${PROXY_SERVER_URL-'https://api.openai.com/v1/chat/completions'}"
|
||||
|
||||
docker run --gpus all -d \
|
||||
-p 5000:5000 \
|
||||
-e LOCAL_DB_TYPE=sqlite \
|
||||
-e LOCAL_DB_PATH=data/default_sqlite.db \
|
||||
-e LLM_MODEL=proxyllm \
|
||||
-e PROXY_API_KEY=$PROXY_API_KEY \
|
||||
-e PROXY_SERVER_URL=$PROXY_SERVER_URL \
|
||||
-e LANGUAGE=zh \
|
||||
-v /data:/data \
|
||||
-v /data/models:/app/models \
|
||||
--name dbgpt \
|
||||
eosphorosai/dbgpt
|
59
docker/examples/sqls/case_1_student_manager_sqlite.sql
Normal file
59
docker/examples/sqls/case_1_student_manager_sqlite.sql
Normal file
@ -0,0 +1,59 @@
|
||||
CREATE TABLE students (
|
||||
student_id INTEGER PRIMARY KEY,
|
||||
student_name VARCHAR(100),
|
||||
major VARCHAR(100),
|
||||
year_of_enrollment INTEGER,
|
||||
student_age INTEGER
|
||||
);
|
||||
|
||||
CREATE TABLE courses (
|
||||
course_id INTEGER PRIMARY KEY,
|
||||
course_name VARCHAR(100),
|
||||
credit REAL
|
||||
);
|
||||
|
||||
CREATE TABLE scores (
|
||||
student_id INTEGER,
|
||||
course_id INTEGER,
|
||||
score INTEGER,
|
||||
semester VARCHAR(50),
|
||||
PRIMARY KEY (student_id, course_id),
|
||||
FOREIGN KEY (student_id) REFERENCES students(student_id),
|
||||
FOREIGN KEY (course_id) REFERENCES courses(course_id)
|
||||
);
|
||||
|
||||
INSERT INTO students (student_id, student_name, major, year_of_enrollment, student_age) VALUES
|
||||
(1, '张三', '计算机科学', 2020, 20),
|
||||
(2, '李四', '计算机科学', 2021, 19),
|
||||
(3, '王五', '物理学', 2020, 21),
|
||||
(4, '赵六', '数学', 2021, 19),
|
||||
(5, '周七', '计算机科学', 2022, 18),
|
||||
(6, '吴八', '物理学', 2020, 21),
|
||||
(7, '郑九', '数学', 2021, 19),
|
||||
(8, '孙十', '计算机科学', 2022, 18),
|
||||
(9, '刘十一', '物理学', 2020, 21),
|
||||
(10, '陈十二', '数学', 2021, 19);
|
||||
|
||||
INSERT INTO courses (course_id, course_name, credit) VALUES
|
||||
(1, '计算机基础', 3),
|
||||
(2, '数据结构', 4),
|
||||
(3, '高等物理', 3),
|
||||
(4, '线性代数', 4),
|
||||
(5, '微积分', 5),
|
||||
(6, '编程语言', 4),
|
||||
(7, '量子力学', 3),
|
||||
(8, '概率论', 4),
|
||||
(9, '数据库系统', 4),
|
||||
(10, '计算机网络', 4);
|
||||
|
||||
INSERT INTO scores (student_id, course_id, score, semester) VALUES
|
||||
(1, 1, 90, '2020年秋季'),
|
||||
(1, 2, 85, '2021年春季'),
|
||||
(2, 1, 88, '2021年秋季'),
|
||||
(2, 2, 90, '2022年春季'),
|
||||
(3, 3, 92, '2020年秋季'),
|
||||
(3, 4, 85, '2021年春季'),
|
||||
(4, 3, 88, '2021年秋季'),
|
||||
(4, 4, 86, '2022年春季'),
|
||||
(5, 1, 90, '2022年秋季'),
|
||||
(5, 2, 87, '2023年春季');
|
59
docker/examples/sqls/case_2_ecom_sqlite.sql
Normal file
59
docker/examples/sqls/case_2_ecom_sqlite.sql
Normal file
@ -0,0 +1,59 @@
|
||||
CREATE TABLE users (
|
||||
user_id INTEGER PRIMARY KEY,
|
||||
user_name VARCHAR(100),
|
||||
user_email VARCHAR(100),
|
||||
registration_date DATE,
|
||||
user_country VARCHAR(100)
|
||||
);
|
||||
|
||||
CREATE TABLE products (
|
||||
product_id INTEGER PRIMARY KEY,
|
||||
product_name VARCHAR(100),
|
||||
product_price REAL
|
||||
);
|
||||
|
||||
CREATE TABLE orders (
|
||||
order_id INTEGER PRIMARY KEY,
|
||||
user_id INTEGER,
|
||||
product_id INTEGER,
|
||||
quantity INTEGER,
|
||||
order_date DATE,
|
||||
FOREIGN KEY (user_id) REFERENCES users(user_id),
|
||||
FOREIGN KEY (product_id) REFERENCES products(product_id)
|
||||
);
|
||||
|
||||
INSERT INTO users (user_id, user_name, user_email, registration_date, user_country) VALUES
|
||||
(1, 'John', 'john@gmail.com', '2020-01-01', 'USA'),
|
||||
(2, 'Mary', 'mary@gmail.com', '2021-01-01', 'UK'),
|
||||
(3, 'Bob', 'bob@gmail.com', '2020-01-01', 'USA'),
|
||||
(4, 'Alice', 'alice@gmail.com', '2021-01-01', 'UK'),
|
||||
(5, 'Charlie', 'charlie@gmail.com', '2020-01-01', 'USA'),
|
||||
(6, 'David', 'david@gmail.com', '2021-01-01', 'UK'),
|
||||
(7, 'Eve', 'eve@gmail.com', '2020-01-01', 'USA'),
|
||||
(8, 'Frank', 'frank@gmail.com', '2021-01-01', 'UK'),
|
||||
(9, 'Grace', 'grace@gmail.com', '2020-01-01', 'USA'),
|
||||
(10, 'Helen', 'helen@gmail.com', '2021-01-01', 'UK');
|
||||
|
||||
INSERT INTO products (product_id, product_name, product_price) VALUES
|
||||
(1, 'iPhone', 699),
|
||||
(2, 'Samsung Galaxy', 599),
|
||||
(3, 'iPad', 329),
|
||||
(4, 'Macbook', 1299),
|
||||
(5, 'Apple Watch', 399),
|
||||
(6, 'AirPods', 159),
|
||||
(7, 'Echo', 99),
|
||||
(8, 'Kindle', 89),
|
||||
(9, 'Fire TV Stick', 39),
|
||||
(10, 'Echo Dot', 49);
|
||||
|
||||
INSERT INTO orders (order_id, user_id, product_id, quantity, order_date) VALUES
|
||||
(1, 1, 1, 1, '2022-01-01'),
|
||||
(2, 1, 2, 1, '2022-02-01'),
|
||||
(3, 2, 3, 2, '2022-03-01'),
|
||||
(4, 2, 4, 1, '2022-04-01'),
|
||||
(5, 3, 5, 2, '2022-05-01'),
|
||||
(6, 3, 6, 3, '2022-06-01'),
|
||||
(7, 4, 7, 2, '2022-07-01'),
|
||||
(8, 4, 8, 1, '2022-08-01'),
|
||||
(9, 5, 9, 2, '2022-09-01'),
|
||||
(10, 5, 10, 3, '2022-10-01');
|
17
docker/examples/sqls/test_case_info_sqlite.sql
Normal file
17
docker/examples/sqls/test_case_info_sqlite.sql
Normal file
@ -0,0 +1,17 @@
|
||||
CREATE TABLE test_cases (
|
||||
case_id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
scenario_name VARCHAR(100),
|
||||
scenario_description TEXT,
|
||||
test_question VARCHAR(500),
|
||||
expected_sql TEXT,
|
||||
correct_output TEXT
|
||||
);
|
||||
|
||||
|
||||
INSERT INTO test_cases (scenario_name, scenario_description, test_question, expected_sql, correct_output) VALUES
|
||||
('学校管理系统', '测试SQL助手的联合查询,条件查询和排序功能', '查询所有学生的姓名,专业和成绩,按成绩降序排序', 'SELECT students.student_name, students.major, scores.score FROM students JOIN scores ON students.student_id = scores.student_id ORDER BY scores.score DESC;', '返回所有学生的姓名,专业和成绩,按成绩降序排序的结果'),
|
||||
('学校管理系统', '测试SQL助手的联合查询,条件查询和排序功能', '查询计算机科学专业的学生的平均成绩', 'SELECT AVG(scores.score) as avg_score FROM students JOIN scores ON students.student_id = scores.student_id WHERE students.major = ''计算机科学'';', '返回计算机科学专业学生的平均成绩'),
|
||||
('学校管理系统', '测试SQL助手的联合查询,条件查询和排序功能', '查询哪些学生在2023年秋季学期的课程学分总和超过15', 'SELECT students.student_name FROM students JOIN scores ON students.student_id = scores.student_id JOIN courses ON scores.course_id = courses.course_id WHERE scores.semester = ''2023年秋季'' GROUP BY students.student_id HAVING SUM(courses.credit) > 15;', '返回在2023年秋季学期的课程学分总和超过15的学生的姓名'),
|
||||
('电商系统', '测试SQL助手的数据聚合和分组功能', '查询每个用户的总订单数量', 'SELECT users.user_name, COUNT(orders.order_id) as order_count FROM users JOIN orders ON users.user_id = orders.user_id GROUP BY users.user_id;', '返回每个用户的总订单数量'),
|
||||
('电商系统', '测试SQL助手的数据聚合和分组功能', '查询每种商品的总销售额', 'SELECT products.product_name, SUM(products.product_price * orders.quantity) as total_sales FROM products JOIN orders ON products.product_id = orders.product_id GROUP BY products.product_id;', '返回每种商品的总销售额'),
|
||||
('电商系统', '测试SQL助手的数据聚合和分组功能', '查询2023年最受欢迎的商品(订单数量最多的商品)', 'SELECT products.product_name FROM products JOIN orders ON products.product_id = orders.product_id WHERE YEAR(orders.order_date) = 2023 GROUP BY products.product_id ORDER BY COUNT(orders.order_id) DESC LIMIT 1;', '返回2023年最受欢迎的商品(订单数量最多的商品)的名称');
|
@ -123,7 +123,7 @@ class Config(metaclass=Singleton):
|
||||
### default Local database connection configuration
|
||||
self.LOCAL_DB_HOST = os.getenv("LOCAL_DB_HOST")
|
||||
self.LOCAL_DB_PATH = os.getenv("LOCAL_DB_PATH", "")
|
||||
self.LOCAL_DB_TYPE = os.getenv("LOCAL_DB_TYPE")
|
||||
self.LOCAL_DB_TYPE = os.getenv("LOCAL_DB_TYPE", "mysql")
|
||||
if self.LOCAL_DB_HOST is None and self.LOCAL_DB_PATH == "":
|
||||
self.LOCAL_DB_HOST = "127.0.0.1"
|
||||
|
||||
|
0
pilot/connections/__init__.py
Normal file
0
pilot/connections/__init__.py
Normal file
@ -93,19 +93,26 @@ class ConnectManager:
|
||||
db_name = CFG.LOCAL_DB_NAME
|
||||
db_type = CFG.LOCAL_DB_TYPE
|
||||
db_path = CFG.LOCAL_DB_PATH
|
||||
if not db_type:
|
||||
# Default file database type
|
||||
db_type = DBType.DuckDb.value()
|
||||
if not db_name:
|
||||
if db_type is None or db_type == DBType.DuckDb.value():
|
||||
# file db is duckdb
|
||||
db_name = self.storage.get_file_db_name(db_path)
|
||||
db_type = DBType.DuckDb.value()
|
||||
else:
|
||||
db_name = DBType.parse_file_db_name_from_path(db_type, db_path)
|
||||
db_type, db_name = self._parse_file_db_info(db_type, db_path)
|
||||
if db_name:
|
||||
print(
|
||||
f"Add file db, db_name: {db_name}, db_type: {db_type}, db_path: {db_path}"
|
||||
)
|
||||
self.storage.add_file_db(db_name, db_type, db_path)
|
||||
|
||||
def _parse_file_db_info(self, db_type: str, db_path: str):
|
||||
if db_type is None or db_type == DBType.DuckDb.value():
|
||||
# file db is duckdb
|
||||
db_name = self.storage.get_file_db_name(db_path)
|
||||
db_type = DBType.DuckDb.value()
|
||||
else:
|
||||
db_name = DBType.parse_file_db_name_from_path(db_type, db_path)
|
||||
return db_type, db_name
|
||||
|
||||
def get_connect(self, db_name):
|
||||
db_config = self.storage.get_db_config(db_name)
|
||||
db_type = DBType.of_db_type(db_config.get("db_type"))
|
||||
|
83
pilot/connections/rdbms/base_dao.py
Normal file
83
pilot/connections/rdbms/base_dao.py
Normal file
@ -0,0 +1,83 @@
|
||||
from sqlalchemy import create_engine
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from pilot.configs.config import Config
|
||||
from pilot.common.schema import DBType
|
||||
from pilot.connections.rdbms.base import RDBMSDatabase
|
||||
from pilot.logs import logger
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class BaseDao:
|
||||
def __init__(
|
||||
self, orm_base=None, database: str = None, create_not_exist_table: bool = False
|
||||
) -> None:
|
||||
"""BaseDAO, If the current database is a file database and create_not_exist_table=True, we will automatically create a table that does not exist"""
|
||||
self._orm_base = orm_base
|
||||
self._database = database
|
||||
self._create_not_exist_table = create_not_exist_table
|
||||
|
||||
self._db_engine = None
|
||||
self._session = None
|
||||
self._connection = None
|
||||
|
||||
@property
|
||||
def db_engine(self):
|
||||
if not self._db_engine:
|
||||
# lazy loading
|
||||
db_engine, connection = _get_db_engine(
|
||||
self._orm_base, self._database, self._create_not_exist_table
|
||||
)
|
||||
self._db_engine = db_engine
|
||||
self._connection = connection
|
||||
return self._db_engine
|
||||
|
||||
@property
|
||||
def Session(self):
|
||||
if not self._session:
|
||||
self._session = sessionmaker(bind=self.db_engine)
|
||||
return self._session
|
||||
|
||||
|
||||
def _get_db_engine(
|
||||
orm_base=None, database: str = None, create_not_exist_table: bool = False
|
||||
):
|
||||
db_engine = None
|
||||
connection: RDBMSDatabase = None
|
||||
|
||||
db_type = DBType.of_db_type(CFG.LOCAL_DB_TYPE)
|
||||
if db_type is None or db_type == DBType.Mysql:
|
||||
# default database
|
||||
db_engine = create_engine(
|
||||
f"mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}",
|
||||
echo=True,
|
||||
)
|
||||
else:
|
||||
db_namager = CFG.LOCAL_DB_MANAGE
|
||||
if not db_namager:
|
||||
raise Exception(
|
||||
"LOCAL_DB_MANAGE is not initialized, please check the system configuration"
|
||||
)
|
||||
if db_type.is_file_db():
|
||||
db_path = CFG.LOCAL_DB_PATH
|
||||
if db_path is None or db_path == "":
|
||||
raise ValueError(
|
||||
"You LOCAL_DB_TYPE is file db, but LOCAL_DB_PATH is not configured, please configure LOCAL_DB_PATH in you .env file"
|
||||
)
|
||||
_, database = db_namager._parse_file_db_info(db_type.value(), db_path)
|
||||
logger.info(
|
||||
f"Current DAO database is file database, db_type: {db_type.value()}, db_path: {db_path}, db_name: {database}"
|
||||
)
|
||||
logger.info(f"Get DAO database connection with database name {database}")
|
||||
connection: RDBMSDatabase = db_namager.get_connect(database)
|
||||
if not isinstance(connection, RDBMSDatabase):
|
||||
raise ValueError(
|
||||
"Currently only supports `RDBMSDatabase` database as the underlying database of BaseDao, please check your database configuration"
|
||||
)
|
||||
db_engine = connection._engine
|
||||
|
||||
if db_type.is_file_db() and orm_base is not None and create_not_exist_table:
|
||||
logger.info("Current database is file database, create not exist table")
|
||||
orm_base.metadata.create_all(db_engine)
|
||||
|
||||
return db_engine, connection
|
@ -22,6 +22,8 @@ class SQLiteConnect(RDBMSDatabase):
|
||||
) -> RDBMSDatabase:
|
||||
"""Construct a SQLAlchemy engine from URI."""
|
||||
_engine_args = engine_args or {}
|
||||
_engine_args["connect_args"] = {"check_same_thread": False}
|
||||
# _engine_args["echo"] = True
|
||||
return cls(create_engine("sqlite:///" + file_path, **_engine_args), **kwargs)
|
||||
|
||||
def get_indexes(self, table_name):
|
||||
|
@ -144,10 +144,8 @@ async def document_upload(
|
||||
request = KnowledgeDocumentRequest()
|
||||
request.doc_name = doc_name
|
||||
request.doc_type = doc_type
|
||||
request.content = (
|
||||
os.path.join(
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename
|
||||
),
|
||||
request.content = os.path.join(
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename
|
||||
)
|
||||
return Result.succ(
|
||||
knowledge_space_service.create_knowledge_document(
|
||||
|
@ -5,7 +5,7 @@ from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine, f
|
||||
from sqlalchemy.orm import declarative_base, sessionmaker
|
||||
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.connections.rdbms.base_dao import BaseDao
|
||||
|
||||
CFG = Config()
|
||||
|
||||
@ -27,14 +27,11 @@ class DocumentChunkEntity(Base):
|
||||
return f"DocumentChunkEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', document_id='{self.document_id}', content='{self.content}', meta_info='{self.meta_info}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
|
||||
|
||||
|
||||
class DocumentChunkDao:
|
||||
class DocumentChunkDao(BaseDao):
|
||||
def __init__(self):
|
||||
database = "knowledge_management"
|
||||
self.db_engine = create_engine(
|
||||
f"mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}",
|
||||
echo=True,
|
||||
super().__init__(
|
||||
database="knowledge_management", orm_base=Base, create_not_exist_table=True
|
||||
)
|
||||
self.Session = sessionmaker(bind=self.db_engine)
|
||||
|
||||
def create_documents_chunks(self, documents: List):
|
||||
session = self.Session()
|
||||
|
@ -4,7 +4,7 @@ from sqlalchemy import Column, String, DateTime, Integer, Text, create_engine, f
|
||||
from sqlalchemy.orm import declarative_base, sessionmaker
|
||||
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.connections.rdbms.base_dao import BaseDao
|
||||
|
||||
CFG = Config()
|
||||
|
||||
@ -19,7 +19,7 @@ class KnowledgeDocumentEntity(Base):
|
||||
space = Column(String(100))
|
||||
chunk_size = Column(Integer)
|
||||
status = Column(String(100))
|
||||
last_sync = Column(String(100))
|
||||
last_sync = Column(DateTime)
|
||||
content = Column(Text)
|
||||
result = Column(Text)
|
||||
vector_ids = Column(Text)
|
||||
@ -30,14 +30,11 @@ class KnowledgeDocumentEntity(Base):
|
||||
return f"KnowledgeDocumentEntity(id={self.id}, doc_name='{self.doc_name}', doc_type='{self.doc_type}', chunk_size='{self.chunk_size}', status='{self.status}', last_sync='{self.last_sync}', content='{self.content}', result='{self.result}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
|
||||
|
||||
|
||||
class KnowledgeDocumentDao:
|
||||
class KnowledgeDocumentDao(BaseDao):
|
||||
def __init__(self):
|
||||
database = "knowledge_management"
|
||||
self.db_engine = create_engine(
|
||||
f"mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}",
|
||||
echo=True,
|
||||
super().__init__(
|
||||
database="knowledge_management", orm_base=Base, create_not_exist_table=True
|
||||
)
|
||||
self.Session = sessionmaker(bind=self.db_engine)
|
||||
|
||||
def create_knowledge_document(self, document: KnowledgeDocumentEntity):
|
||||
session = self.Session()
|
||||
|
@ -2,11 +2,11 @@ from datetime import datetime
|
||||
|
||||
from sqlalchemy import Column, Integer, Text, String, DateTime, create_engine
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.server.knowledge.request.request import KnowledgeSpaceRequest
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from pilot.connections.rdbms.base_dao import BaseDao
|
||||
|
||||
CFG = Config()
|
||||
Base = declarative_base()
|
||||
@ -27,14 +27,11 @@ class KnowledgeSpaceEntity(Base):
|
||||
return f"KnowledgeSpaceEntity(id={self.id}, name='{self.name}', vector_type='{self.vector_type}', desc='{self.desc}', owner='{self.owner}' context='{self.context}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
|
||||
|
||||
|
||||
class KnowledgeSpaceDao:
|
||||
class KnowledgeSpaceDao(BaseDao):
|
||||
def __init__(self):
|
||||
database = "knowledge_management"
|
||||
self.db_engine = create_engine(
|
||||
f"mysql+pymysql://{CFG.LOCAL_DB_USER}:{CFG.LOCAL_DB_PASSWORD}@{CFG.LOCAL_DB_HOST}:{CFG.LOCAL_DB_PORT}/{database}",
|
||||
echo=True,
|
||||
super().__init__(
|
||||
database="knowledge_management", orm_base=Base, create_not_exist_table=True
|
||||
)
|
||||
self.Session = sessionmaker(bind=self.db_engine)
|
||||
|
||||
def create_knowledge_space(self, space: KnowledgeSpaceRequest):
|
||||
session = self.Session()
|
||||
|
Loading…
Reference in New Issue
Block a user