feat(model): Support AquilaChat2-34B

This commit is contained in:
FangYin Cheng
2023-10-30 11:48:05 +08:00
parent 52d6095b21
commit 95d3f5222b
14 changed files with 234 additions and 85 deletions

View File

@@ -1,6 +1,6 @@
LLM USE FAQ
==================================
##### Q1:how to use openai chatgpt service
##### Q1: how to use openai chatgpt service
change your LLM_MODEL in `.env`
````shell
LLM_MODEL=proxyllm
@@ -15,7 +15,7 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
make sure your openapi API_KEY is available
##### Q2 What difference between `python dbgpt_server --light` and `python dbgpt_server`
##### Q2: What difference between `python dbgpt_server --light` and `python dbgpt_server`
```{note}
* `python dbgpt_server --light` dbgpt_server does not start the llm service. Users can deploy the llm service separately by using `python llmserver`, and dbgpt_server accesses the llm service through set the LLM_SERVER environment variable in .env. The purpose is to allow for the separate deployment of dbgpt's backend service and llm service.
@@ -35,7 +35,7 @@ python pilot/server/dbgpt_server.py --light
```
##### Q3 How to use MultiGPUs
##### Q3: How to use MultiGPUs
DB-GPT will use all available gpu by default. And you can modify the setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file
to use the specific gpu IDs.
@@ -52,7 +52,7 @@ CUDA_VISIBLE_DEVICES=3,4,5,6 python3 pilot/server/dbgpt_server.py
You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to configure the maximum memory used by each GPU.
##### Q4 Not Enough Memory
##### Q4: Not Enough Memory
DB-GPT supported 8-bit quantization and 4-bit quantization.
@@ -60,9 +60,9 @@ You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` in `.env
Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit quantization can run with 48 GB of VRAM.
Note: you need to install the latest dependencies according to [requirements.txt](https://github.com/eosphoros-ai/DB-GPT/blob/main/requirements.txt).
Note: you need to install the quantization dependencies with `pip install -e ".[quantization]"`
##### Q5 How to Add LLM Service dynamic local mode
##### Q5: How to Add LLM Service dynamic local mode
Now DB-GPT through multi-llm service switch, so how to add llm service dynamic,
@@ -75,7 +75,7 @@ eg: dbgpt model start --model_name chatglm2-6b --model_path /root/DB-GPT/models/
chatgpt
eg: dbgpt model start --model_name chatgpt_proxyllm --model_path chatgpt_proxyllm --proxy_api_key ${OPENAI_KEY} --proxy_server_url {OPENAI_URL}
```
##### Q6 How to Add LLM Service dynamic in remote mode
##### Q6: How to Add LLM Service dynamic in remote mode
If you deploy llm service in remote machine instance, and you want to add model service to dbgpt server to manage
use dbgpt start worker and set --controller_addr.
@@ -88,13 +88,13 @@ eg: dbgpt start worker --model_name vicuna-13b-v1.5 \
```
##### Q7 dbgpt command not found
##### Q7: dbgpt command not found
```commandline
pip install -e "pip install -e ".[default]"
```
##### Q8 When starting the worker_manager on a cloud server and registering it with the controller, it is noticed that the worker's exposed IP is a private IP instead of a public IP, which leads to the inability to access the service.
##### Q8: When starting the worker_manager on a cloud server and registering it with the controller, it is noticed that the worker's exposed IP is a private IP instead of a public IP, which leads to the inability to access the service.
```commandline
@@ -103,4 +103,14 @@ pip install -e "pip install -e ".[default]"
automatically determined
```
##### Q9: How to customize model path and prompt template
DB-GPT will read the model path from `pilot.configs.model_config.LLM_MODEL_CONFIG` based on the `LLM_MODEL`.
Of course, you can use the environment variable `LLM_MODEL_PATH` to specify the model path and `LLM_PROMPT_TEMPLATE` to specify your model prompt template.
```
LLM_MODEL=vicuna-13b-v1.5
LLM_MODEL_PATH=/app/models/vicuna-13b-v1.5
# LLM_PROMPT_TEMPLATE=vicuna_v1.1
```