mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-11 05:49:22 +00:00
feat(model): Support AquilaChat2-34B
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
LLM USE FAQ
|
||||
==================================
|
||||
##### Q1:how to use openai chatgpt service
|
||||
##### Q1: how to use openai chatgpt service
|
||||
change your LLM_MODEL in `.env`
|
||||
````shell
|
||||
LLM_MODEL=proxyllm
|
||||
@@ -15,7 +15,7 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
|
||||
|
||||
make sure your openapi API_KEY is available
|
||||
|
||||
##### Q2 What difference between `python dbgpt_server --light` and `python dbgpt_server`
|
||||
##### Q2: What difference between `python dbgpt_server --light` and `python dbgpt_server`
|
||||
```{note}
|
||||
* `python dbgpt_server --light` dbgpt_server does not start the llm service. Users can deploy the llm service separately by using `python llmserver`, and dbgpt_server accesses the llm service through set the LLM_SERVER environment variable in .env. The purpose is to allow for the separate deployment of dbgpt's backend service and llm service.
|
||||
|
||||
@@ -35,7 +35,7 @@ python pilot/server/dbgpt_server.py --light
|
||||
```
|
||||
|
||||
|
||||
##### Q3 How to use MultiGPUs
|
||||
##### Q3: How to use MultiGPUs
|
||||
|
||||
DB-GPT will use all available gpu by default. And you can modify the setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file
|
||||
to use the specific gpu IDs.
|
||||
@@ -52,7 +52,7 @@ CUDA_VISIBLE_DEVICES=3,4,5,6 python3 pilot/server/dbgpt_server.py
|
||||
|
||||
You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to configure the maximum memory used by each GPU.
|
||||
|
||||
##### Q4 Not Enough Memory
|
||||
##### Q4: Not Enough Memory
|
||||
|
||||
DB-GPT supported 8-bit quantization and 4-bit quantization.
|
||||
|
||||
@@ -60,9 +60,9 @@ You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` in `.env
|
||||
|
||||
Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit quantization can run with 48 GB of VRAM.
|
||||
|
||||
Note: you need to install the latest dependencies according to [requirements.txt](https://github.com/eosphoros-ai/DB-GPT/blob/main/requirements.txt).
|
||||
Note: you need to install the quantization dependencies with `pip install -e ".[quantization]"`
|
||||
|
||||
##### Q5 How to Add LLM Service dynamic local mode
|
||||
##### Q5: How to Add LLM Service dynamic local mode
|
||||
|
||||
Now DB-GPT through multi-llm service switch, so how to add llm service dynamic,
|
||||
|
||||
@@ -75,7 +75,7 @@ eg: dbgpt model start --model_name chatglm2-6b --model_path /root/DB-GPT/models/
|
||||
chatgpt
|
||||
eg: dbgpt model start --model_name chatgpt_proxyllm --model_path chatgpt_proxyllm --proxy_api_key ${OPENAI_KEY} --proxy_server_url {OPENAI_URL}
|
||||
```
|
||||
##### Q6 How to Add LLM Service dynamic in remote mode
|
||||
##### Q6: How to Add LLM Service dynamic in remote mode
|
||||
If you deploy llm service in remote machine instance, and you want to add model service to dbgpt server to manage
|
||||
|
||||
use dbgpt start worker and set --controller_addr.
|
||||
@@ -88,13 +88,13 @@ eg: dbgpt start worker --model_name vicuna-13b-v1.5 \
|
||||
|
||||
```
|
||||
|
||||
##### Q7 dbgpt command not found
|
||||
##### Q7: dbgpt command not found
|
||||
|
||||
```commandline
|
||||
pip install -e "pip install -e ".[default]"
|
||||
```
|
||||
|
||||
##### Q8 When starting the worker_manager on a cloud server and registering it with the controller, it is noticed that the worker's exposed IP is a private IP instead of a public IP, which leads to the inability to access the service.
|
||||
##### Q8: When starting the worker_manager on a cloud server and registering it with the controller, it is noticed that the worker's exposed IP is a private IP instead of a public IP, which leads to the inability to access the service.
|
||||
|
||||
```commandline
|
||||
|
||||
@@ -103,4 +103,14 @@ pip install -e "pip install -e ".[default]"
|
||||
automatically determined
|
||||
```
|
||||
|
||||
##### Q9: How to customize model path and prompt template
|
||||
|
||||
DB-GPT will read the model path from `pilot.configs.model_config.LLM_MODEL_CONFIG` based on the `LLM_MODEL`.
|
||||
Of course, you can use the environment variable `LLM_MODEL_PATH` to specify the model path and `LLM_PROMPT_TEMPLATE` to specify your model prompt template.
|
||||
|
||||
```
|
||||
LLM_MODEL=vicuna-13b-v1.5
|
||||
LLM_MODEL_PATH=/app/models/vicuna-13b-v1.5
|
||||
# LLM_PROMPT_TEMPLATE=vicuna_v1.1
|
||||
```
|
||||
|
||||
|
Reference in New Issue
Block a user