Merge branch 'llm_fxp' into dev

# Conflicts:
#	.env.template
#	pilot/out_parser/base.py
This commit is contained in:
yhjun1026 2023-06-01 15:35:01 +08:00
commit 96c516ab55
11 changed files with 158 additions and 9 deletions

View File

@ -101,8 +101,8 @@ LANGUAGE=en
#*******************************************************************#
# ** PROXY_SERVER
#*******************************************************************#
PROXY_API_KEY=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
PROXY_SERVER_URL=http://127.0.0.1:3000/api/openai/v1/chat/completions
PROXY_API_KEY=
PROXY_SERVER_URL=http://127.0.0.1:3000/proxy_address
#*******************************************************************#

View File

@ -260,7 +260,7 @@ Run the Python interpreter and type the commands:
这是一个用于数据库的复杂且创新的工具, 我们的项目也在紧急的开发当中, 会陆续发布一些新的feature。如在使用当中有任何具体问题, 优先在项目下提issue, 如有需要, 请联系如下微信,我会尽力提供帮助,同时也非常欢迎大家参与到项目建设中。
<p align="center">
<img src="./assets/DB_GPT_wechat.png" width="320px" />
<img src="./assets/wechat.jpg" width="320px" />
</p>
## Licence

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 323 KiB

After

Width:  |  Height:  |  Size: 168 KiB

View File

@ -35,6 +35,7 @@ LLM_MODEL_CONFIG = {
"chatglm-6b": os.path.join(MODEL_PATH, "chatglm-6b"),
"text2vec-base": os.path.join(MODEL_PATH, "text2vec-base-chinese"),
"sentence-transforms": os.path.join(MODEL_PATH, "all-MiniLM-L6-v2"),
"guanaco-33b-merged": os.path.join(MODEL_PATH, "guanaco-33b-merged"),
"proxyllm": "proxyllm",
}

View File

@ -3,7 +3,7 @@
from functools import cache
from typing import List
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
from pilot.configs.model_config import DEVICE
@ -86,7 +86,15 @@ class ChatGLMAdapater(BaseLLMAdaper):
class GuanacoAdapter(BaseLLMAdaper):
"""TODO Support guanaco"""
pass
def match(self, model_path: str):
return "guanaco" in model_path
def loader(self, model_path: str, from_pretrained_kwargs: dict):
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, load_in_4bit=True, device_map={"": 0}, **from_pretrained_kwargs
)
return model, tokenizer
class CodeGenAdapter(BaseLLMAdaper):
@ -143,6 +151,7 @@ class ProxyllmAdapter(BaseLLMAdaper):
register_llm_model_adapters(VicunaLLMAdapater)
register_llm_model_adapters(ChatGLMAdapater)
register_llm_model_adapters(GuanacoAdapter)
# TODO Default support vicuna, other model need to tests and Evaluate
# just for test, remove this later

View File

@ -0,0 +1,65 @@
import torch
from threading import Thread
from transformers import TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria
from pilot.conversation import ROLE_ASSISTANT, ROLE_USER
def guanaco_generate_output(model, tokenizer, params, device, context_len=2048):
"""Fork from: https://github.com/KohakuBlueleaf/guanaco-lora/blob/main/generate.py"""
print(params)
stop = params.get("stop", "###")
messages = params["prompt"]
hist = []
for i in range(1, len(messages) - 2, 2):
hist.append(
(
messages[i].split(ROLE_USER + ":")[1],
messages[i + 1].split(ROLE_ASSISTANT + ":")[1],
)
)
query = messages[-2].split(ROLE_USER + ":")[1]
print("Query Message: ", query)
input_ids = tokenizer(query, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
stop_token_ids = [0]
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
stop = StopOnTokens()
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=512,
temperature=1.0,
do_sample=True,
top_k=1,
streamer=streamer,
repetition_penalty=1.7,
stopping_criteria=StoppingCriteriaList([stop])
)
t1 = Thread(target=model.generate, kwargs=generate_kwargs)
t1.start()
generator = model.generate(**generate_kwargs)
for output in generator:
# new_tokens = len(output) - len(input_ids[0])
decoded_output = tokenizer.decode(output)
if output[-1] in [tokenizer.eos_token_id]:
break
out = decoded_output.split("### Response:")[-1].strip()
yield out

View File

@ -1,6 +1,11 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import traceback
from queue import Queue
from threading import Thread
import transformers
from typing import List, Optional
from pilot.configs.config import Config
@ -47,3 +52,66 @@ def create_chat_completion(
response = None
# TODO impl this use vicuna server api
class Stream(transformers.StoppingCriteria):
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, input_ids, scores) -> bool:
if self.callback_func is not None:
self.callback_func(input_ids[0])
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
"""
def __init__(self, func, kwargs={}, callback=None):
self.mfunc = func
self.c_callback = callback
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs
self.stop_now = False
def _callback(val):
if self.stop_now:
raise ValueError
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
except:
traceback.print_exc()
pass
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True

View File

@ -113,7 +113,11 @@ class ModelLoader(metaclass=Singleton):
or self.device == "mps"
and tokenizer
):
model.to(self.device)
# 4-bit not support this
try:
model.to(self.device)
except ValueError:
pass
if debug:
print(model)

View File

@ -108,7 +108,7 @@ class BaseOutputParser(ABC):
if not self.is_stream_out:
return self._parse_model_nostream_resp(response, self.sep)
else:
return self._parse_model_stream_resp(response, self.sep, skip_echo_len)
return self._parse_model_stream_resp(response, self.sep)
def parse_prompt_response(self, model_out_text) -> T:
"""

View File

@ -91,8 +91,9 @@ class GuanacoChatAdapter(BaseChatAdpter):
return "guanaco" in model_path
def get_generate_stream_func(self):
# TODO
pass
from pilot.model.guanaco_llm import guanaco_generate_output
return guanaco_generate_output
class ProxyllmChatAdapter(BaseChatAdpter):
@ -107,6 +108,7 @@ class ProxyllmChatAdapter(BaseChatAdpter):
register_llm_model_chat_adapter(VicunaChatAdapter)
register_llm_model_chat_adapter(ChatGLMChatAdapter)
register_llm_model_chat_adapter(GuanacoChatAdapter)
# Proxy model for test and develop, it's cheap for us now.
register_llm_model_chat_adapter(ProxyllmChatAdapter)