mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-13 14:06:43 +00:00
update:config env
This commit is contained in:
parent
e6339b06ad
commit
977a88509e
@ -139,29 +139,21 @@ class MilvusStore(VectorStoreBase):
|
||||
fields.append(
|
||||
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1)
|
||||
)
|
||||
# create the primary key field
|
||||
# primary key field
|
||||
fields.append(
|
||||
FieldSchema(primary_field, DataType.INT64, is_primary=True, auto_id=True)
|
||||
)
|
||||
# create the vector field
|
||||
# vector field
|
||||
fields.append(FieldSchema(vector_field, DataType.FLOAT_VECTOR, dim=dim))
|
||||
# Create the schema for the collection
|
||||
# milvus the schema for the collection
|
||||
schema = CollectionSchema(fields)
|
||||
# Create the collection
|
||||
collection = Collection(collection_name, schema)
|
||||
self.col = collection
|
||||
# Index parameters for the collection
|
||||
# index parameters for the collection
|
||||
index = self.index_params
|
||||
# Create the index
|
||||
# milvus index
|
||||
collection.create_index(vector_field, index)
|
||||
# Create the VectorStore
|
||||
# milvus = cls(
|
||||
# embedding,
|
||||
# kwargs.get("connection_args", {"port": 19530}),
|
||||
# collection_name,
|
||||
# text_field,
|
||||
# )
|
||||
# Add the texts.
|
||||
schema = collection.schema
|
||||
for x in schema.fields:
|
||||
self.fields.append(x.name)
|
||||
|
@ -69,6 +69,7 @@ colorama
|
||||
playsound
|
||||
distro
|
||||
pypdf
|
||||
milvus-cli==0.3.2
|
||||
|
||||
# Testing dependencies
|
||||
pytest
|
||||
|
@ -2,11 +2,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import argparse
|
||||
|
||||
from pilot.configs.model_config import DATASETS_DIR, LLM_MODEL_CONFIG, VECTOR_SEARCH_TOP_K, VECTOR_STORE_CONFIG, \
|
||||
VECTOR_STORE_TYPE
|
||||
from pilot.configs.config import Config
|
||||
from pilot.configs.model_config import DATASETS_DIR, LLM_MODEL_CONFIG, VECTOR_SEARCH_TOP_K
|
||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
|
||||
CFG = Config()
|
||||
class LocalKnowledgeInit:
|
||||
embeddings: object = None
|
||||
model_name = LLM_MODEL_CONFIG["text2vec"]
|
||||
@ -32,6 +32,7 @@ class LocalKnowledgeInit:
|
||||
dc, s = doc
|
||||
yield s, dc
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--vector_name", type=str, default="default")
|
||||
@ -40,8 +41,8 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
vector_name = args.vector_name
|
||||
append_mode = args.append
|
||||
store_type = VECTOR_STORE_TYPE
|
||||
vector_store_config = {"url": VECTOR_STORE_CONFIG["url"], "port": VECTOR_STORE_CONFIG["port"], "vector_store_name":vector_name}
|
||||
store_type = CFG.VECTOR_STORE_TYPE
|
||||
vector_store_config = {"vector_store_name": vector_name}
|
||||
print(vector_store_config)
|
||||
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
|
||||
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
||||
|
Loading…
Reference in New Issue
Block a user