refactor: RAG Refactor (#985)

Co-authored-by: Aralhi <xiaoping0501@gmail.com>
Co-authored-by: csunny <cfqsunny@163.com>
This commit is contained in:
Aries-ckt
2024-01-03 09:45:26 +08:00
committed by GitHub
parent 90775aad50
commit 9ad70a2961
206 changed files with 5766 additions and 2419 deletions

View File

@@ -2,6 +2,7 @@ import os
import shutil
import tempfile
import logging
from typing import List
from fastapi import APIRouter, File, UploadFile, Form
@@ -13,10 +14,10 @@ from dbgpt.configs.model_config import (
from dbgpt.app.openapi.api_v1.api_v1 import no_stream_generator, stream_generator
from dbgpt.app.openapi.api_view_model import Result
from dbgpt.rag.embedding_engine.embedding_engine import EmbeddingEngine
from dbgpt.rag.embedding_engine.embedding_factory import EmbeddingFactory
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
from dbgpt.app.knowledge.service import KnowledgeService
from dbgpt.rag.knowledge.factory import KnowledgeFactory
from dbgpt.app.knowledge.request.request import (
KnowledgeQueryRequest,
KnowledgeQueryResponse,
@@ -27,9 +28,14 @@ from dbgpt.app.knowledge.request.request import (
SpaceArgumentRequest,
EntityExtractRequest,
DocumentSummaryRequest,
KnowledgeSyncRequest,
)
from dbgpt.app.knowledge.request.request import KnowledgeSpaceRequest
from dbgpt.rag.knowledge.base import ChunkStrategy
from dbgpt.rag.retriever.embedding import EmbeddingRetriever
from dbgpt.storage.vector_store.base import VectorStoreConfig
from dbgpt.storage.vector_store.connector import VectorStoreConnector
from dbgpt.util.tracer import root_tracer, SpanType
logger = logging.getLogger(__name__)
@@ -103,6 +109,39 @@ def document_add(space_name: str, request: KnowledgeDocumentRequest):
return Result.failed(code="E000X", msg=f"document add error {e}")
@router.get("/knowledge/document/chunkstrategies")
def chunk_strategies():
"""Get chunk strategies"""
print(f"/document/chunkstrategies:")
try:
return Result.succ(
[
{
"strategy": strategy.name,
"name": strategy.value[2],
"description": strategy.value[3],
"parameters": strategy.value[1],
"suffix": [
knowledge.document_type().value
for knowledge in KnowledgeFactory.subclasses()
if strategy in knowledge.support_chunk_strategy()
and knowledge.document_type() is not None
],
"type": set(
[
knowledge.type().value
for knowledge in KnowledgeFactory.subclasses()
if strategy in knowledge.support_chunk_strategy()
]
),
}
for strategy in ChunkStrategy
]
)
except Exception as e:
return Result.failed(code="E000X", msg=f"chunk strategies error {e}")
@router.post("/knowledge/{space_name}/document/list")
def document_list(space_name: str, query_request: DocumentQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
@@ -189,6 +228,18 @@ def document_sync(space_name: str, request: DocumentSyncRequest):
return Result.failed(code="E000X", msg=f"document sync error {e}")
@router.post("/knowledge/{space_name}/document/sync_batch")
def batch_document_sync(space_name: str, request: List[KnowledgeSyncRequest]):
logger.info(f"Received params: {space_name}, {request}")
try:
doc_ids = knowledge_space_service.batch_document_sync(
space_name=space_name, sync_requests=request
)
return Result.succ({"tasks": doc_ids})
except Exception as e:
return Result.failed(code="E000X", msg=f"document sync error {e}")
@router.post("/knowledge/{space_name}/chunk/list")
def document_list(space_name: str, query_request: ChunkQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
@@ -204,15 +255,23 @@ def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory
)
client = EmbeddingEngine(
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config={"vector_store_name": space_name},
embedding_factory=embedding_factory,
config = VectorStoreConfig(
name=space_name,
embedding_fn=embedding_factory.create(
EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
),
)
docs = client.similar_search(query_request.query, query_request.top_k)
vector_store_connector = VectorStoreConnector(
vector_store_type=CFG.VECTOR_STORE_TYPE,
vector_store_config=config,
)
retriever = EmbeddingRetriever(
top_k=query_request.top_k, vector_store_connector=vector_store_connector
)
chunks = retriever.retrieve(query_request.query)
res = [
KnowledgeQueryResponse(text=d.page_content, source=d.metadata["source"])
for d in docs
KnowledgeQueryResponse(text=d.content, source=d.metadata["source"])
for d in chunks
]
return {"response": res}
@@ -254,7 +313,7 @@ async def entity_extract(request: EntityExtractRequest):
logger.info(f"Received params: {request}")
try:
from dbgpt.app.scene import ChatScene
from dbgpt._private.chat_util import llm_chat_response_nostream
from dbgpt.util.chat_util import llm_chat_response_nostream
import uuid
chat_param = {