mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-24 19:08:58 +00:00
refactor: RAG Refactor (#985)
Co-authored-by: Aralhi <xiaoping0501@gmail.com> Co-authored-by: csunny <cfqsunny@163.com>
This commit is contained in:
147
dbgpt/rag/graph/graph_engine.py
Normal file
147
dbgpt/rag/graph/graph_engine.py
Normal file
@@ -0,0 +1,147 @@
|
||||
import logging
|
||||
from typing import Any, Optional, Callable, Tuple, List
|
||||
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
|
||||
from dbgpt.rag.embedding import KnowledgeType
|
||||
from dbgpt.rag.embedding.knowledge_type import get_knowledge_embedding
|
||||
from dbgpt.rag.graph.index_struct import KG
|
||||
from dbgpt.rag.graph.node import TextNode
|
||||
from dbgpt.util import utils
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RAGGraphEngine:
|
||||
"""Knowledge RAG Graph Engine.
|
||||
Build a RAG Graph Client can extract triplets and insert into graph store.
|
||||
Args:
|
||||
knowledge_type (Optional[str]): Default: KnowledgeType.DOCUMENT.value
|
||||
extracting triplets.
|
||||
knowledge_source (Optional[str]):
|
||||
model_name (Optional[str]): llm model name
|
||||
graph_store (Optional[GraphStore]): The graph store to use.refrence:llama-index
|
||||
include_embeddings (bool): Whether to include embeddings in the index.
|
||||
Defaults to False.
|
||||
max_object_length (int): The maximum length of the object in a triplet.
|
||||
Defaults to 128.
|
||||
extract_triplet_fn (Optional[Callable]): The function to use for
|
||||
extracting triplets. Defaults to None.
|
||||
"""
|
||||
|
||||
index_struct_cls = KG
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
knowledge_type: Optional[str] = KnowledgeType.DOCUMENT.value,
|
||||
knowledge_source: Optional[str] = None,
|
||||
text_splitter=None,
|
||||
graph_store=None,
|
||||
index_struct: Optional[KG] = None,
|
||||
model_name: Optional[str] = None,
|
||||
max_triplets_per_chunk: int = 10,
|
||||
include_embeddings: bool = False,
|
||||
max_object_length: int = 128,
|
||||
extract_triplet_fn: Optional[Callable] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize params."""
|
||||
from llama_index.graph_stores import SimpleGraphStore
|
||||
|
||||
# need to set parameters before building index in base class.
|
||||
self.knowledge_source = knowledge_source
|
||||
self.knowledge_type = knowledge_type
|
||||
self.model_name = model_name
|
||||
self.text_splitter = text_splitter
|
||||
self.index_struct = index_struct
|
||||
self.include_embeddings = include_embeddings
|
||||
self.graph_store = graph_store or SimpleGraphStore()
|
||||
# self.graph_store = graph_store
|
||||
self.max_triplets_per_chunk = max_triplets_per_chunk
|
||||
self._max_object_length = max_object_length
|
||||
self._extract_triplet_fn = extract_triplet_fn
|
||||
|
||||
def knowledge_graph(self, docs=None):
|
||||
"""knowledge docs into graph store"""
|
||||
if not docs:
|
||||
if self.text_splitter:
|
||||
self.text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=2000, chunk_overlap=100
|
||||
)
|
||||
knowledge_source = get_knowledge_embedding(
|
||||
knowledge_type=self.knowledge_type,
|
||||
knowledge_source=self.knowledge_source,
|
||||
text_splitter=self.text_splitter,
|
||||
)
|
||||
docs = knowledge_source.read()
|
||||
if self.index_struct is None:
|
||||
self.index_struct = self._build_index_from_docs(docs)
|
||||
|
||||
def _extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
|
||||
"""Extract triplets from text by function or llm"""
|
||||
if self._extract_triplet_fn is not None:
|
||||
return self._extract_triplet_fn(text)
|
||||
else:
|
||||
return self._llm_extract_triplets(text)
|
||||
|
||||
def _llm_extract_triplets(self, text: str) -> List[Tuple[str, str, str]]:
|
||||
"""Extract triplets from text by llm"""
|
||||
from dbgpt.app.scene import ChatScene
|
||||
from dbgpt.util.chat_util import llm_chat_response_nostream
|
||||
import uuid
|
||||
|
||||
chat_param = {
|
||||
"chat_session_id": uuid.uuid1(),
|
||||
"current_user_input": text,
|
||||
"select_param": "triplet",
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
loop = utils.get_or_create_event_loop()
|
||||
triplets = loop.run_until_complete(
|
||||
llm_chat_response_nostream(
|
||||
ChatScene.ExtractTriplet.value(), **{"chat_param": chat_param}
|
||||
)
|
||||
)
|
||||
return triplets
|
||||
|
||||
def _build_index_from_docs(self, documents: List[Document]) -> KG:
|
||||
"""Build the index from nodes.
|
||||
Args:documents:List[Document]
|
||||
"""
|
||||
index_struct = self.index_struct_cls()
|
||||
triplets = []
|
||||
for doc in documents:
|
||||
trips = self._extract_triplets_task([doc], index_struct)
|
||||
triplets.extend(trips)
|
||||
print(triplets)
|
||||
text_node = TextNode(text=doc.page_content, metadata=doc.metadata)
|
||||
for triplet in triplets:
|
||||
subj, _, obj = triplet
|
||||
self.graph_store.upsert_triplet(*triplet)
|
||||
index_struct.add_node([subj, obj], text_node)
|
||||
return index_struct
|
||||
|
||||
def search(self, query):
|
||||
from dbgpt.rag.graph.graph_search import RAGGraphSearch
|
||||
|
||||
graph_search = RAGGraphSearch(graph_engine=self)
|
||||
return graph_search.search(query)
|
||||
|
||||
def _extract_triplets_task(self, docs, index_struct):
|
||||
triple_results = []
|
||||
for doc in docs:
|
||||
import threading
|
||||
|
||||
thread_id = threading.get_ident()
|
||||
print(f"current thread-{thread_id} begin extract triplets task")
|
||||
triplets = self._extract_triplets(doc.page_content)
|
||||
if len(triplets) == 0:
|
||||
triplets = []
|
||||
text_node = TextNode(text=doc.page_content, metadata=doc.metadata)
|
||||
logger.info(f"extracted knowledge triplets: {triplets}")
|
||||
print(
|
||||
f"current thread-{thread_id} end extract triplets tasks, triplets-{triplets}"
|
||||
)
|
||||
triple_results.extend(triplets)
|
||||
return triple_results
|
||||
Reference in New Issue
Block a user