refactor: RAG Refactor (#985)

Co-authored-by: Aralhi <xiaoping0501@gmail.com>
Co-authored-by: csunny <cfqsunny@163.com>
This commit is contained in:
Aries-ckt
2024-01-03 09:45:26 +08:00
committed by GitHub
parent 90775aad50
commit 9ad70a2961
206 changed files with 5766 additions and 2419 deletions

View File

@@ -1,18 +1,69 @@
from abc import ABC, abstractmethod
import math
from typing import Optional, Callable, List, Any
from pydantic import Field, BaseModel
from dbgpt.rag.chunk import Chunk
class VectorStoreConfig(BaseModel):
"""Vector store config."""
name: str = Field(
default="dbgpt_collection",
description="The name of vector store, if not set, will use the default name.",
)
user: Optional[str] = Field(
default=None,
description="The user of vector store, if not set, will use the default user.",
)
password: Optional[str] = Field(
default=None,
description="The password of vector store, if not set, will use the default password.",
)
embedding_fn: Optional[Any] = Field(
default=None,
description="The embedding function of vector store, if not set, will use the default embedding function.",
)
class VectorStoreBase(ABC):
"""base class for vector store database"""
@abstractmethod
def load_document(self, documents) -> None:
"""load document in vector database."""
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""load document in vector database.
Args:
- chunks: document chunks.
Return:
- ids: chunks ids.
"""
pass
@abstractmethod
def similar_search(self, text, topk) -> None:
"""similar search in vector database."""
def similar_search(self, text, topk) -> List[Chunk]:
"""similar search in vector database.
Args:
- text: query text
- topk: topk
Return:
- chunks: chunks.
"""
pass
@abstractmethod
def similar_search_with_scores(
self, text, topk, score_threshold: float
) -> List[Chunk]:
"""similar search in vector database with scores.
Args:
- text: query text
- topk: topk
- score_threshold: score_threshold: Optional, a floating point value between 0 to 1
Return:
- chunks: chunks.
"""
pass
@abstractmethod
@@ -22,12 +73,17 @@ class VectorStoreBase(ABC):
@abstractmethod
def delete_by_ids(self, ids):
"""delete vector by ids."""
pass
"""delete vector by ids.
Args:
- ids: vector ids
"""
@abstractmethod
def delete_vector_name(self, vector_name):
"""delete vector name."""
"""delete vector name.
Args:
- vector_name: vector store name
"""
pass
def _normalization_vectors(self, vectors):

View File

@@ -1,30 +1,45 @@
import os
import logging
from typing import Any
from typing import Any, List
from chromadb.config import Settings
from chromadb import PersistentClient
from dbgpt.storage.vector_store.base import VectorStoreBase
from pydantic import Field
from dbgpt.rag.chunk import Chunk
from dbgpt.storage.vector_store.base import VectorStoreBase, VectorStoreConfig
from dbgpt.configs.model_config import PILOT_PATH
logger = logging.getLogger(__name__)
class ChromaVectorConfig(VectorStoreConfig):
"""Chroma vector store config."""
persist_path: str = Field(
default=os.getenv("CHROMA_PERSIST_PATH", None),
description="The password of vector store, if not set, will use the default password.",
)
collection_metadata: dict = Field(
default=None,
description="the index metadata of vector store, if not set, will use the default metadata.",
)
class ChromaStore(VectorStoreBase):
"""chroma database"""
def __init__(self, ctx: {}) -> None:
def __init__(self, vector_store_config: ChromaVectorConfig) -> None:
from langchain.vectorstores import Chroma
self.ctx = ctx
chroma_path = ctx.get(
"CHROMA_PERSIST_PATH",
os.path.join(PILOT_PATH, "data"),
chroma_vector_config = vector_store_config.dict()
chroma_path = chroma_vector_config.get(
"persist_path", os.path.join(PILOT_PATH, "data")
)
self.persist_dir = os.path.join(
chroma_path, ctx["vector_store_name"] + ".vectordb"
chroma_path, vector_store_config.name + ".vectordb"
)
self.embeddings = ctx.get("embeddings", None)
self.embeddings = vector_store_config.embedding_fn
chroma_settings = Settings(
# chroma_db_impl="duckdb+parquet", => deprecated configuration of Chroma
persist_directory=self.persist_dir,
@@ -32,7 +47,9 @@ class ChromaStore(VectorStoreBase):
)
client = PersistentClient(path=self.persist_dir, settings=chroma_settings)
collection_metadata = {"hnsw:space": "cosine"}
collection_metadata = chroma_vector_config.get("collection_metadata") or {
"hnsw:space": "cosine"
}
self.vector_store_client = Chroma(
persist_directory=self.persist_dir,
embedding_function=self.embeddings,
@@ -41,11 +58,15 @@ class ChromaStore(VectorStoreBase):
collection_metadata=collection_metadata,
)
def similar_search(self, text, topk, **kwargs: Any) -> None:
def similar_search(self, text, topk, **kwargs: Any) -> List[Chunk]:
logger.info("ChromaStore similar search")
return self.vector_store_client.similarity_search(text, topk, **kwargs)
lc_documents = self.vector_store_client.similarity_search(text, topk, **kwargs)
return [
Chunk(content=doc.page_content, metadata=doc.metadata)
for doc in lc_documents
]
def similar_search_with_scores(self, text, topk, score_threshold) -> None:
def similar_search_with_scores(self, text, topk, score_threshold) -> List[Chunk]:
"""
Chroma similar_search_with_score.
Return docs and relevance scores in the range [0, 1].
@@ -55,15 +76,19 @@ class ChromaStore(VectorStoreBase):
score_threshold(float): score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs,0 is dissimilar, 1 is most similar.
"""
logger.info("ChromaStore similar search")
logger.info("ChromaStore similar search with scores")
docs_and_scores = (
self.vector_store_client.similarity_search_with_relevance_scores(
query=text, k=topk, score_threshold=score_threshold
)
)
return docs_and_scores
return [
Chunk(content=doc.page_content, metadata=doc.metadata, score=score)
for doc, score in docs_and_scores
]
def vector_name_exists(self):
"""is vector store name exist."""
logger.info(f"Check persist_dir: {self.persist_dir}")
if not os.path.exists(self.persist_dir):
return False
@@ -72,11 +97,12 @@ class ChromaStore(VectorStoreBase):
files = list(filter(lambda f: f != "chroma.sqlite3", files))
return len(files) > 0
def load_document(self, documents):
def load_document(self, chunks: List[Chunk]) -> List[str]:
logger.info("ChromaStore load document")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
ids = self.vector_store_client.add_texts(texts=texts, metadatas=metadatas)
texts = [chunk.content for chunk in chunks]
metadatas = [chunk.metadata for chunk in chunks]
ids = [chunk.chunk_id for chunk in chunks]
self.vector_store_client.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return ids
def delete_vector_name(self, vector_name):

View File

@@ -1,54 +1,94 @@
import os
from typing import Optional, List, Callable, Any
from dbgpt.rag.chunk import Chunk
from dbgpt.storage import vector_store
from dbgpt.storage.vector_store.base import VectorStoreBase
from dbgpt.storage.vector_store.base import VectorStoreBase, VectorStoreConfig
connector = {}
class VectorStoreConnector:
"""VectorStoreConnector, can connect different vector db provided load document api_v1 and similar search api_v1.
1.load_document:knowledge document source into vector store.(Chroma, Milvus, Weaviate)
2.similar_search: similarity search from vector_store
3.similar_search_with_scores: similarity search with similarity score from vector_store
code example:
>>> from dbgpt.storage.vector_store.connector import VectorStoreConnector
>>> vector_store_config = VectorStoreConfig
>>> vector_store_connector = VectorStoreConnector(vector_store_type="Chroma")
"""
def __init__(self, vector_store_type, ctx: {}) -> None:
def __init__(
self, vector_store_type: str, vector_store_config: VectorStoreConfig = None
) -> None:
"""initialize vector store connector.
Args:
- vector_store_type: vector store type Milvus, Chroma, Weaviate
- ctx: vector store config params.
"""
self.ctx = ctx
self._vector_store_config = vector_store_config
self._register()
if self._match(vector_store_type):
self.connector_class = connector.get(vector_store_type)
else:
raise Exception(f"Vector Type Not support. {0}", vector_store_type)
raise Exception(f"Vector Store Type Not support. {0}", vector_store_type)
print(self.connector_class)
self.client = self.connector_class(ctx)
self.client = self.connector_class(vector_store_config)
def load_document(self, docs):
"""load document in vector database."""
return self.client.load_document(docs)
@classmethod
def from_default(
cls,
vector_store_type: str = None,
embedding_fn: Optional[Any] = None,
vector_store_config: Optional[VectorStoreConfig] = None,
) -> "VectorStoreConnector":
"""initialize default vector store connector."""
vector_store_type = vector_store_type or os.getenv(
"VECTOR_STORE_TYPE", "Chroma"
)
from dbgpt.storage.vector_store.chroma_store import ChromaVectorConfig
def similar_search(self, doc: str, topk: int):
vector_store_config = vector_store_config or ChromaVectorConfig()
vector_store_config.embedding_fn = embedding_fn
return cls(vector_store_type, vector_store_config)
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""load document in vector database.
Args:
- chunks: document chunks.
Return chunk ids.
"""
return self.client.load_document(chunks)
def similar_search(self, doc: str, topk: int) -> List[Chunk]:
"""similar search in vector database.
Args:
- doc: query text
- topk: topk
Return:
- chunks: chunks.
"""
return self.client.similar_search(doc, topk)
def similar_search_with_scores(self, doc: str, topk: int, score_threshold: float):
def similar_search_with_scores(
self, doc: str, topk: int, score_threshold: float
) -> List[Chunk]:
"""
similar_search_with_score in vector database..
Return docs and relevance scores in the range [0, 1].
Args:
doc(str): query text
topk(int): return docs nums. Defaults to 4.
score_threshold(float): score_threshold: Optional, a floating point value between 0 to 1 to
- doc(str): query text
- topk(int): return docs nums. Defaults to 4.
- score_threshold(float): score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs,0 is dissimilar, 1 is most similar.
Return:
- chunks: chunks.
"""
return self.client.similar_search_with_scores(doc, topk, score_threshold)

View File

@@ -5,49 +5,111 @@ import logging
import os
from typing import Any, Iterable, List, Optional, Tuple
from pydantic import Field
from dbgpt.storage.vector_store.base import VectorStoreBase
from dbgpt.rag.chunk import Chunk, Document
from dbgpt.storage.vector_store.base import VectorStoreBase, VectorStoreConfig
from dbgpt.util import string_utils
logger = logging.getLogger(__name__)
class MilvusVectorConfig(VectorStoreConfig):
"""Milvus vector store config."""
uri: str = Field(
default="localhost",
description="The uri of milvus store, if not set, will use the default uri.",
)
port: str = Field(
default="19530",
description="The port of milvus store, if not set, will use the default port.",
)
alias: str = Field(
default="default",
description="The alias of milvus store, if not set, will use the default alias.",
)
user: str = Field(
default=None,
description="The user of milvus store, if not set, will use the default user.",
)
password: str = Field(
default=None,
description="The password of milvus store, if not set, will use the default password.",
)
primary_field: str = Field(
default="pk_id",
description="The primary field of milvus store, if not set, will use the default primary field.",
)
text_field: str = Field(
default="content",
description="The text field of milvus store, if not set, will use the default text field.",
)
embedding_field: str = Field(
default="vector",
description="The embedding field of milvus store, if not set, will use the default embedding field.",
)
metadata_field: str = Field(
default="metadata",
description="The metadata field of milvus store, if not set, will use the default metadata field.",
)
secure: str = Field(
default="",
description="The secure of milvus store, if not set, will use the default secure.",
)
class MilvusStore(VectorStoreBase):
"""Milvus database"""
def __init__(self, ctx: {}) -> None:
"""MilvusStore init."""
def __init__(self, vector_store_config: MilvusVectorConfig) -> None:
"""MilvusStore init.
Args:
vector_store_config (MilvusVectorConfig): MilvusStore config.
refer to https://milvus.io/docs/v2.0.x/manage_connection.md
"""
from pymilvus import connections
"""init a milvus storage connection.
Args:
ctx ({}): MilvusStore global config.
"""
# self.configure(cfg)
connect_kwargs = {}
self.uri = ctx.get("MILVUS_URL", os.getenv("MILVUS_URL"))
self.port = ctx.get("MILVUS_PORT", os.getenv("MILVUS_PORT"))
self.username = ctx.get("MILVUS_USERNAME", os.getenv("MILVUS_USERNAME"))
self.password = ctx.get("MILVUS_PASSWORD", os.getenv("MILVUS_PASSWORD"))
self.secure = ctx.get("MILVUS_SECURE", os.getenv("MILVUS_SECURE"))
self.collection_name = ctx.get("vector_store_name", None)
self.embedding = ctx.get("embeddings", None)
milvus_vector_config = vector_store_config.dict()
self.uri = milvus_vector_config.get("uri") or os.getenv(
"MILVUS_URL", "localhost"
)
self.port = milvus_vector_config.get("post") or os.getenv(
"MILVUS_PORT", "19530"
)
self.username = milvus_vector_config.get("user") or os.getenv("MILVUS_USER")
self.password = milvus_vector_config.get("password") or os.getenv(
"MILVUS_PASSWORD"
)
self.secure = milvus_vector_config.get("secure") or os.getenv("MILVUS_SECURE")
self.collection_name = (
milvus_vector_config.get("name") or vector_store_config.name
)
if string_utils.is_all_chinese(self.collection_name):
bytes_str = self.collection_name.encode("utf-8")
hex_str = bytes_str.hex()
self.collection_name = hex_str
self.embedding = vector_store_config.embedding_fn
self.fields = []
self.alias = "default"
self.alias = milvus_vector_config.get("alias") or "default"
# use HNSW by default.
self.index_params = {
"metric_type": "L2",
"index_type": "HNSW",
"metric_type": "COSINE",
"params": {"M": 8, "efConstruction": 64},
}
# use HNSW by default.
self.index_params_map = {
"IVF_FLAT": {"params": {"nprobe": 10}},
"IVF_SQ8": {"params": {"nprobe": 10}},
"IVF_PQ": {"params": {"nprobe": 10}},
"HNSW": {"params": {"ef": 10}},
"HNSW": {"params": {"M": 8, "efConstruction": 64}},
"RHNSW_FLAT": {"params": {"ef": 10}},
"RHNSW_SQ": {"params": {"ef": 10}},
"RHNSW_PQ": {"params": {"ef": 10}},
@@ -55,10 +117,10 @@ class MilvusStore(VectorStoreBase):
"ANNOY": {"params": {"search_k": 10}},
}
# default collection schema
self.primary_field = "pk_id"
self.vector_field = "vector"
self.text_field = "content"
self.metadata_field = "metadata"
self.primary_field = milvus_vector_config.get("primary_field") or "pk_id"
self.vector_field = milvus_vector_config.get("embedding_field") or "vector"
self.text_field = milvus_vector_config.get("text_field") or "content"
self.metadata_field = milvus_vector_config.get("metadata_field") or "metadata"
if (self.username is None) != (self.password is None):
raise ValueError(
@@ -75,13 +137,13 @@ class MilvusStore(VectorStoreBase):
# secure=self.secure,
)
def init_schema_and_load(self, vector_name, documents):
def init_schema_and_load(self, vector_name, documents) -> List[str]:
"""Create a Milvus collection, indexes it with HNSW, load document.
Args:
vector_name (Embeddings): your collection name.
documents (List[str]): Text to insert.
Returns:
VectorStore: The MilvusStore vector store.
List[str]: document ids.
"""
try:
from pymilvus import (
@@ -105,7 +167,7 @@ class MilvusStore(VectorStoreBase):
alias="default"
# secure=self.secure,
)
texts = [d.page_content for d in documents]
texts = [d.content for d in documents]
metadatas = [d.metadata for d in documents]
embeddings = self.embedding.embed_query(texts[0])
@@ -183,7 +245,7 @@ class MilvusStore(VectorStoreBase):
import numpy as np
text_vector = self.embedding.embed_documents(list(texts))
insert_dict[self.vector_field] = self._normalization_vectors(text_vector)
insert_dict[self.vector_field] = text_vector
except NotImplementedError:
insert_dict[self.vector_field] = [
self.embedding.embed_query(x) for x in texts
@@ -204,12 +266,11 @@ class MilvusStore(VectorStoreBase):
self.col.flush()
return res.primary_keys
def load_document(self, documents) -> None:
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""load document in vector database."""
# self.init_schema_and_load(self.collection_name, documents)
batch_size = 500
batched_list = [
documents[i : i + batch_size] for i in range(0, len(documents), batch_size)
chunks[i : i + batch_size] for i in range(0, len(chunks), batch_size)
]
doc_ids = []
for doc_batch in batched_list:
@@ -217,7 +278,7 @@ class MilvusStore(VectorStoreBase):
doc_ids = [str(doc_id) for doc_id in doc_ids]
return doc_ids
def similar_search(self, text, topk):
def similar_search(self, text, topk) -> List[Chunk]:
from pymilvus import Collection, DataType
"""similar_search in vector database."""
@@ -232,17 +293,16 @@ class MilvusStore(VectorStoreBase):
if x.dtype == DataType.FLOAT_VECTOR or x.dtype == DataType.BINARY_VECTOR:
self.vector_field = x.name
_, docs_and_scores = self._search(text, topk)
from langchain.schema import Document
return [
Document(
Chunk(
metadata=json.loads(doc.metadata.get("metadata", "")),
page_content=doc.page_content,
content=doc.content,
)
for doc, _, _ in docs_and_scores
]
def similar_search_with_scores(self, text, topk, score_threshold):
def similar_search_with_scores(self, text, topk, score_threshold) -> List[Chunk]:
"""Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus
@@ -286,7 +346,12 @@ class MilvusStore(VectorStoreBase):
if score_threshold is not None:
docs_and_scores = [
(doc, score)
Chunk(
metadata=doc.metadata,
content=doc.content,
score=score,
chunk_id=id,
)
for doc, score, id in docs_and_scores
if score >= score_threshold
]
@@ -308,22 +373,19 @@ class MilvusStore(VectorStoreBase):
timeout: Optional[int] = None,
**kwargs: Any,
):
from langchain.docstore.document import Document
self.col.load()
# use default index params.
if param is None:
index_type = self.col.indexes[0].params["index_type"]
param = self.index_params_map[index_type]
param = self.index_params_map[index_type].get("params")
# query text embedding.
query_vector = self.embedding.embed_query(query)
data = [self._normalization_vectors(query_vector)]
# Determine result metadata fields.
output_fields = self.fields[:]
output_fields.remove(self.vector_field)
# milvus search.
res = self.col.search(
data,
[query_vector],
self.vector_field,
param,
k,
@@ -339,13 +401,13 @@ class MilvusStore(VectorStoreBase):
meta = {x: result.entity.get(x) for x in output_fields}
ret.append(
(
Document(page_content=meta.pop(self.text_field), metadata=meta),
self._default_relevance_score_fn(result.distance),
Chunk(content=meta.pop(self.text_field), metadata=meta),
result.distance,
result.id,
)
)
return data[0], ret
return ret[0], ret
def vector_name_exists(self):
from pymilvus import utility

View File

@@ -1,6 +1,10 @@
from typing import Any
from typing import Any, List
import logging
from dbgpt.storage.vector_store.base import VectorStoreBase
from pydantic import Field
from dbgpt.rag.chunk import Chunk
from dbgpt.storage.vector_store.base import VectorStoreBase, VectorStoreConfig
from dbgpt._private.config import Config
logger = logging.getLogger(__name__)
@@ -8,21 +12,29 @@ logger = logging.getLogger(__name__)
CFG = Config()
class PGVectorConfig(VectorStoreConfig):
"""PG vector store config."""
connection_string: str = Field(
default=None,
description="the connection string of vector store, if not set, will use the default connection string.",
)
class PGVectorStore(VectorStoreBase):
"""`Postgres.PGVector` vector store.
To use this, you should have the ``pgvector`` python package installed.
"""
def __init__(self, ctx: dict) -> None:
def __init__(self, vector_store_config: PGVectorConfig) -> None:
"""init pgvector storage"""
from langchain.vectorstores import PGVector
self.ctx = ctx
self.connection_string = ctx.get("connection_string", None)
self.embeddings = ctx.get("embeddings", None)
self.collection_name = ctx.get("vector_store_name", None)
self.connection_string = vector_store_config.connection_string
self.embeddings = vector_store_config.embedding_fn
self.collection_name = vector_store_config.name
self.vector_store_client = PGVector(
embedding_function=self.embeddings,
@@ -41,8 +53,9 @@ class PGVectorStore(VectorStoreBase):
logger.error("vector_name_exists error", e.message)
return False
def load_document(self, documents) -> None:
return self.vector_store_client.from_documents(documents)
def load_document(self, chunks: List[Chunk]) -> List[str]:
lc_documents = [Chunk.chunk2langchain(chunk) for chunk in chunks]
return self.vector_store_client.from_documents(lc_documents)
def delete_vector_name(self, vector_name):
return self.vector_store_client.delete_collection()

View File

@@ -1,19 +1,36 @@
import os
import logging
from typing import List
from langchain.schema import Document
from pydantic import Field
from dbgpt._private.config import Config
from dbgpt.configs.model_config import KNOWLEDGE_UPLOAD_ROOT_PATH
from dbgpt.storage.vector_store.base import VectorStoreBase
from dbgpt.rag.chunk import Chunk
from dbgpt.storage.vector_store.base import VectorStoreBase, VectorStoreConfig
logger = logging.getLogger(__name__)
CFG = Config()
class WeaviateVectorConfig(VectorStoreConfig):
"""Weaviate vector store config."""
weaviate_url: str = Field(
default=os.getenv("WEAVIATE_URL", None),
description="weaviate url address, if not set, will use the default url.",
)
persist_path: str = Field(
default=os.getenv("WEAVIATE_PERSIST_PATH", None),
description="weaviate persist path.",
)
class WeaviateStore(VectorStoreBase):
"""Weaviate database"""
def __init__(self, ctx: dict) -> None:
def __init__(self, vector_store_config: WeaviateVectorConfig) -> None:
"""Initialize with Weaviate client."""
try:
import weaviate
@@ -23,12 +40,11 @@ class WeaviateStore(VectorStoreBase):
"Please install it with `pip install weaviate-client`."
)
self.ctx = ctx
self.weaviate_url = ctx.get("WEAVIATE_URL", os.getenv("WEAVIATE_URL"))
self.embedding = ctx.get("embeddings", None)
self.vector_name = ctx["vector_store_name"]
self.weaviate_url = vector_store_config.weaviate_url
self.embedding = vector_store_config.embedding_fn
self.vector_name = vector_store_config.name
self.persist_dir = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, self.vector_name + ".vectordb"
vector_store_config.persist_path, vector_store_config.name + ".vectordb"
)
self.vector_store_client = weaviate.Client(self.weaviate_url)
@@ -120,11 +136,11 @@ class WeaviateStore(VectorStoreBase):
# Create the schema in Weaviate
self.vector_store_client.schema.create(schema)
def load_document(self, documents: list) -> None:
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""Load documents into Weaviate"""
logger.info("Weaviate load document")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
texts = [doc.content for doc in chunks]
metadatas = [doc.metadata for doc in chunks]
# Import data
with self.vector_store_client.batch as batch:
@@ -134,7 +150,7 @@ class WeaviateStore(VectorStoreBase):
for i in range(len(texts)):
properties = {
"metadata": metadatas[i]["source"],
"page_content": texts[i],
"content": texts[i],
}
self.vector_store_client.batch.add_data_object(