mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-06 03:20:41 +00:00
convert file address
This commit is contained in:
65
examples/app.py
Normal file
65
examples/app.py
Normal file
@@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import gradio as gr
|
||||
from langchain.agents import (
|
||||
load_tools,
|
||||
initialize_agent,
|
||||
AgentType
|
||||
)
|
||||
from pilot.model.vicuna_llm import VicunaRequestLLM, VicunaEmbeddingLLM
|
||||
from llama_index import LLMPredictor, LangchainEmbedding, ServiceContext
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from llama_index import Document, GPTSimpleVectorIndex
|
||||
|
||||
def agent_demo():
|
||||
llm = VicunaRequestLLM()
|
||||
|
||||
tools = load_tools(['python_repl'], llm=llm)
|
||||
agent = initialize_agent(tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
|
||||
agent.run(
|
||||
"Write a SQL script that Query 'select count(1)!'"
|
||||
)
|
||||
|
||||
def knowledged_qa_demo(text_list):
|
||||
llm_predictor = LLMPredictor(llm=VicunaRequestLLM())
|
||||
hfemb = VicunaEmbeddingLLM()
|
||||
embed_model = LangchainEmbedding(hfemb)
|
||||
documents = [Document(t) for t in text_list]
|
||||
|
||||
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model)
|
||||
index = GPTSimpleVectorIndex.from_documents(documents, service_context=service_context)
|
||||
return index
|
||||
|
||||
|
||||
def get_answer(q):
|
||||
base_knowledge = """ """
|
||||
text_list = [base_knowledge]
|
||||
index = knowledged_qa_demo(text_list)
|
||||
response = index.query(q)
|
||||
return response.response
|
||||
|
||||
def get_similar(q):
|
||||
from pilot.vector_store.extract_tovec import knownledge_tovec, knownledge_tovec_st
|
||||
docsearch = knownledge_tovec_st("./datasets/plan.md")
|
||||
docs = docsearch.similarity_search_with_score(q, k=1)
|
||||
|
||||
for doc in docs:
|
||||
dc, s = doc
|
||||
print(s)
|
||||
yield dc.page_content
|
||||
|
||||
if __name__ == "__main__":
|
||||
# agent_demo()
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.Markdown("数据库智能助手")
|
||||
with gr.Tab("知识问答"):
|
||||
text_input = gr.TextArea()
|
||||
text_output = gr.TextArea()
|
||||
text_button = gr.Button()
|
||||
|
||||
text_button.click(get_similar, inputs=text_input, outputs=text_output)
|
||||
|
||||
demo.queue(concurrency_count=3).launch(server_name="0.0.0.0")
|
||||
|
Reference in New Issue
Block a user