feat: add GraphRAG framework and integrate TuGraph (#1506)

Co-authored-by: KingSkyLi <15566300566@163.com>
Co-authored-by: aries_ckt <916701291@qq.com>
Co-authored-by: Fangyin Cheng <staneyffer@gmail.com>
This commit is contained in:
Florian
2024-05-16 15:39:50 +08:00
committed by GitHub
parent 593e974405
commit a9087c3853
133 changed files with 10139 additions and 6631 deletions

View File

@@ -1,4 +1,5 @@
"""Base Assembler."""
from abc import ABC, abstractmethod
from typing import Any, List, Optional
@@ -37,13 +38,15 @@ class BaseAssembler(ABC):
)
self._chunks: List[Chunk] = []
metadata = {
"knowledge_cls": self._knowledge.__class__.__name__
if self._knowledge
else None,
"knowledge_cls": (
self._knowledge.__class__.__name__ if self._knowledge else None
),
"knowledge_type": self._knowledge.type().value if self._knowledge else None,
"path": self._knowledge._path
if self._knowledge and hasattr(self._knowledge, "_path")
else None,
"path": (
self._knowledge._path
if self._knowledge and hasattr(self._knowledge, "_path")
else None
),
"chunk_parameters": self._chunk_parameters.dict(),
}
with root_tracer.start_span("BaseAssembler.load_knowledge", metadata=metadata):
@@ -70,6 +73,14 @@ class BaseAssembler(ABC):
List[str]: List of persisted chunk ids.
"""
async def apersist(self) -> List[str]:
"""Persist chunks.
Returns:
List[str]: List of persisted chunk ids.
"""
raise NotImplementedError
def get_chunks(self) -> List[Chunk]:
"""Return chunks."""
return self._chunks

View File

@@ -106,6 +106,14 @@ class EmbeddingAssembler(BaseAssembler):
"""
return self._vector_store_connector.load_document(self._chunks)
async def apersist(self) -> List[str]:
"""Persist chunks into store.
Returns:
List[str]: List of chunk ids.
"""
return await self._vector_store_connector.aload_document(self._chunks)
def _extract_info(self, chunks) -> List[Chunk]:
"""Extract info from chunks."""
return []

View File

@@ -0,0 +1 @@
"""Module for index."""

168
dbgpt/rag/index/base.py Normal file
View File

@@ -0,0 +1,168 @@
"""Index store base class."""
import logging
import time
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List, Optional
from dbgpt._private.pydantic import BaseModel, ConfigDict, Field, model_to_dict
from dbgpt.core import Chunk, Embeddings
from dbgpt.storage.vector_store.filters import MetadataFilters
logger = logging.getLogger(__name__)
class IndexStoreConfig(BaseModel):
"""Index store config."""
model_config = ConfigDict(arbitrary_types_allowed=True, extra="allow")
name: str = Field(
default="dbgpt_collection",
description="The name of index store, if not set, will use the default name.",
)
embedding_fn: Optional[Embeddings] = Field(
default=None,
description="The embedding function of vector store, if not set, will use the "
"default embedding function.",
)
max_chunks_once_load: int = Field(
default=10,
description="The max number of chunks to load at once. If your document is "
"large, you can set this value to a larger number to speed up the loading "
"process. Default is 10.",
)
max_threads: int = Field(
default=1,
description="The max number of threads to use. Default is 1. If you set this "
"bigger than 1, please make sure your vector store is thread-safe.",
)
def to_dict(self, **kwargs) -> Dict[str, Any]:
"""Convert to dict."""
return model_to_dict(self, **kwargs)
class IndexStoreBase(ABC):
"""Index store base class."""
@abstractmethod
def load_document(self, chunks: List[Chunk]) -> List[str]:
"""Load document in index database.
Args:
chunks(List[Chunk]): document chunks.
Return:
List[str]: chunk ids.
"""
@abstractmethod
def aload_document(self, chunks: List[Chunk]) -> List[str]:
"""Load document in index database.
Args:
chunks(List[Chunk]): document chunks.
Return:
List[str]: chunk ids.
"""
@abstractmethod
def similar_search_with_scores(
self,
text,
topk,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
"""Similar search with scores in index database.
Args:
text(str): The query text.
topk(int): The number of similar documents to return.
score_threshold(int): score_threshold: Optional, a floating point value
between 0 to 1
filters(Optional[MetadataFilters]): metadata filters.
Return:
List[Chunk]: The similar documents.
"""
@abstractmethod
def delete_by_ids(self, ids: str):
"""Delete docs.
Args:
ids(str): The vector ids to delete, separated by comma.
"""
@abstractmethod
def delete_vector_name(self, index_name: str):
"""Delete index by name.
Args:
index_name(str): The name of index to delete.
"""
def load_document_with_limit(
self, chunks: List[Chunk], max_chunks_once_load: int = 10, max_threads: int = 1
) -> List[str]:
"""Load document in index database with specified limit.
Args:
chunks(List[Chunk]): Document chunks.
max_chunks_once_load(int): Max number of chunks to load at once.
max_threads(int): Max number of threads to use.
Return:
List[str]: Chunk ids.
"""
# Group the chunks into chunks of size max_chunks
chunk_groups = [
chunks[i : i + max_chunks_once_load]
for i in range(0, len(chunks), max_chunks_once_load)
]
logger.info(
f"Loading {len(chunks)} chunks in {len(chunk_groups)} groups with "
f"{max_threads} threads."
)
ids = []
loaded_cnt = 0
start_time = time.time()
with ThreadPoolExecutor(max_workers=max_threads) as executor:
tasks = []
for chunk_group in chunk_groups:
tasks.append(executor.submit(self.load_document, chunk_group))
for future in tasks:
success_ids = future.result()
ids.extend(success_ids)
loaded_cnt += len(success_ids)
logger.info(f"Loaded {loaded_cnt} chunks, total {len(chunks)} chunks.")
logger.info(
f"Loaded {len(chunks)} chunks in {time.time() - start_time} seconds"
)
return ids
def similar_search(
self, text: str, topk: int, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
"""Similar search in index database.
Args:
text(str): The query text.
topk(int): The number of similar documents to return.
filters(Optional[MetadataFilters]): metadata filters.
Return:
List[Chunk]: The similar documents.
"""
return self.similar_search_with_scores(text, topk, 1.0, filters)
async def asimilar_search_with_scores(
self,
doc: str,
topk: int,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
"""Aynsc similar_search_with_score in vector database."""
return self.similar_search_with_scores(doc, topk, score_threshold, filters)

View File

@@ -229,6 +229,6 @@ class EmbeddingRetriever(BaseRetriever):
self, query, score_threshold, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
"""Similar search with score."""
return self._vector_store_connector.similar_search_with_scores(
return await self._vector_store_connector.asimilar_search_with_scores(
query, self._top_k, score_threshold, filters
)

View File

@@ -0,0 +1 @@
"""Module for transformer."""

View File

@@ -0,0 +1,26 @@
"""Transformer base class."""
import logging
from abc import ABC, abstractmethod
from typing import List, Optional
logger = logging.getLogger(__name__)
class TransformerBase:
"""Transformer base class."""
class EmbedderBase(TransformerBase, ABC):
"""Embedder base class."""
class ExtractorBase(TransformerBase, ABC):
"""Extractor base class."""
@abstractmethod
async def extract(self, text: str, limit: Optional[int] = None) -> List:
"""Extract results from text."""
class TranslatorBase(TransformerBase, ABC):
"""Translator base class."""

View File

@@ -0,0 +1,50 @@
"""KeywordExtractor class."""
import logging
from typing import List, Optional
from dbgpt.core import LLMClient
from dbgpt.rag.transformer.llm_extractor import LLMExtractor
KEYWORD_EXTRACT_PT = (
"A question is provided below. Given the question, extract up to "
"keywords from the text. Focus on extracting the keywords that we can use "
"to best lookup answers to the question.\n"
"Generate as more as possible synonyms or alias of the keywords "
"considering possible cases of capitalization, pluralization, "
"common expressions, etc.\n"
"Avoid stopwords.\n"
"Provide the keywords and synonyms in comma-separated format."
"Formatted keywords and synonyms text should be separated by a semicolon.\n"
"---------------------\n"
"Example:\n"
"Text: Alice is Bob's mother.\n"
"Keywords:\nAlice,mother,Bob;mummy\n"
"Text: Philz is a coffee shop founded in Berkeley in 1982.\n"
"Keywords:\nPhilz,coffee shop,Berkeley,1982;coffee bar,coffee house\n"
"---------------------\n"
"Text: {text}\n"
"Keywords:\n"
)
logger = logging.getLogger(__name__)
class KeywordExtractor(LLMExtractor):
"""KeywordExtractor class."""
def __init__(self, llm_client: LLMClient, model_name: str):
"""Initialize the KeywordExtractor."""
super().__init__(llm_client, model_name, KEYWORD_EXTRACT_PT)
def _parse_response(self, text: str, limit: Optional[int] = None) -> List[str]:
keywords = set()
for part in text.split(";"):
for s in part.strip().split(","):
keyword = s.strip()
if keyword:
keywords.add(keyword)
if limit and len(keywords) >= limit:
return list(keywords)
return list(keywords)

View File

@@ -0,0 +1,50 @@
"""TripletExtractor class."""
import logging
from abc import ABC, abstractmethod
from typing import List, Optional
from dbgpt.core import HumanPromptTemplate, LLMClient, ModelMessage, ModelRequest
from dbgpt.rag.transformer.base import ExtractorBase
logger = logging.getLogger(__name__)
class LLMExtractor(ExtractorBase, ABC):
"""LLMExtractor class."""
def __init__(self, llm_client: LLMClient, model_name: str, prompt_template: str):
"""Initialize the LLMExtractor."""
self._llm_client = llm_client
self._model_name = model_name
self._prompt_template = prompt_template
async def extract(self, text: str, limit: Optional[int] = None) -> List:
"""Extract by LLm."""
template = HumanPromptTemplate.from_template(self._prompt_template)
messages = template.format_messages(text=text)
# use default model if needed
if not self._model_name:
models = await self._llm_client.models()
if not models:
raise Exception("No models available")
self._model_name = models[0].model
logger.info(f"Using model {self._model_name} to extract")
model_messages = ModelMessage.from_base_messages(messages)
request = ModelRequest(model=self._model_name, messages=model_messages)
response = await self._llm_client.generate(request=request)
if not response.success:
code = str(response.error_code)
reason = response.text
logger.error(f"request llm failed ({code}) {reason}")
return []
if limit and limit < 1:
ValueError("optional argument limit >= 1")
return self._parse_response(response.text, limit)
@abstractmethod
def _parse_response(self, text: str, limit: Optional[int] = None) -> List:
"""Parse llm response."""

View File

@@ -0,0 +1,10 @@
"""Text2Cypher class."""
import logging
from dbgpt.rag.transformer.base import TranslatorBase
logger = logging.getLogger(__name__)
class Text2Cypher(TranslatorBase):
"""Text2Cypher class."""

View File

@@ -0,0 +1,10 @@
"""Text2GQL class."""
import logging
from dbgpt.rag.transformer.base import TranslatorBase
logger = logging.getLogger(__name__)
class Text2GQL(TranslatorBase):
"""Text2GQL class."""

View File

@@ -0,0 +1,10 @@
"""Text2Vector class."""
import logging
from dbgpt.rag.transformer.base import EmbedderBase
logger = logging.getLogger(__name__)
class Text2Vector(EmbedderBase):
"""Text2Vector class."""

View File

@@ -0,0 +1,71 @@
"""TripletExtractor class."""
import logging
import re
from typing import Any, List, Optional, Tuple
from dbgpt.core import LLMClient
from dbgpt.rag.transformer.llm_extractor import LLMExtractor
logger = logging.getLogger(__name__)
TRIPLET_EXTRACT_PT = (
"Some text is provided below. Given the text, "
"extract up to knowledge triplets as more as possible "
"in the form of (subject, predicate, object).\n"
"Avoid stopwords.\n"
"---------------------\n"
"Example:\n"
"Text: Alice is Bob's mother.\n"
"Triplets:\n(Alice, is mother of, Bob)\n"
"Text: Alice has 2 apples.\n"
"Triplets:\n(Alice, has 2, apple)\n"
"Text: Alice was given 1 apple by Bob.\n"
"Triplets:(Bob, gives 1 apple, Bob)\n"
"Text: Alice was pushed by Bob.\n"
"Triplets:(Bob, pushes, Alice)\n"
"Text: Bob's mother Alice has 2 apples.\n"
"Triplets:\n(Alice, is mother of, Bob)\n(Alice, has 2, apple)\n"
"Text: A Big monkey climbed up the tall fruit tree and picked 3 peaches.\n"
"Triplets:\n(monkey, climbed up, fruit tree)\n(monkey, picked 3, peach)\n"
"Text: Alice has 2 apples, she gives 1 to Bob.\n"
"Triplets:\n"
"(Alice, has 2, apple)\n(Alice, gives 1 apple, Bob)\n"
"Text: Philz is a coffee shop founded in Berkeley in 1982.\n"
"Triplets:\n"
"(Philz, is, coffee shop)\n(Philz, founded in, Berkeley)\n"
"(Philz, founded in, 1982)\n"
"---------------------\n"
"Text: {text}\n"
"Triplets:\n"
)
class TripletExtractor(LLMExtractor):
"""TripletExtractor class."""
def __init__(self, llm_client: LLMClient, model_name: str):
"""Initialize the TripletExtractor."""
super().__init__(llm_client, model_name, TRIPLET_EXTRACT_PT)
def _parse_response(
self, text: str, limit: Optional[int] = None
) -> List[Tuple[Any, ...]]:
triplets = []
for line in text.split("\n"):
for match in re.findall(r"\((.*?)\)", line):
splits = match.split(",")
parts = [split.strip() for split in splits if split.strip()]
if len(parts) == 3:
parts = [
p.strip(
"`~!@#$%^&*()-=+[]\\{}|;':\",./<>?"
"·!¥&*()—【】、「」;‘’:“”,。、《》?"
)
for p in parts
]
triplets.append(tuple(parts))
if limit and len(triplets) >= limit:
return triplets
return triplets