mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-22 10:08:34 +00:00
feat:chunk split method replace
chunk split method replace
This commit is contained in:
parent
a50694bf6e
commit
aad45a6b70
@ -6,7 +6,7 @@ from typing import List
|
||||
import markdown
|
||||
from bs4 import BeautifulSoup
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import SpacyTextSplitter
|
||||
from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.embedding_engine import SourceEmbedding, register
|
||||
@ -30,12 +30,20 @@ class MarkdownEmbedding(SourceEmbedding):
|
||||
def read(self):
|
||||
"""Load from markdown path."""
|
||||
loader = EncodeTextLoader(self.file_path)
|
||||
textsplitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
# text_splitter = SpacyTextSplitter(
|
||||
# pipeline="zh_core_web_sm",
|
||||
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
# chunk_overlap=100,
|
||||
# )
|
||||
if CFG.LANGUAGE == "en":
|
||||
text_splitter = CharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=20,
|
||||
length_function=len,
|
||||
)
|
||||
else:
|
||||
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||
return loader.load_and_split(text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@ -4,10 +4,11 @@ from typing import List
|
||||
|
||||
from langchain.document_loaders import PyPDFLoader
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import SpacyTextSplitter
|
||||
from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.embedding_engine import SourceEmbedding, register
|
||||
from pilot.embedding_engine.chn_document_splitter import CHNDocumentSplitter
|
||||
|
||||
CFG = Config()
|
||||
|
||||
@ -28,12 +29,20 @@ class PDFEmbedding(SourceEmbedding):
|
||||
# textsplitter = CHNDocumentSplitter(
|
||||
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
||||
# )
|
||||
textsplitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=100,
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
# textsplitter = SpacyTextSplitter(
|
||||
# pipeline="zh_core_web_sm",
|
||||
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
# chunk_overlap=100,
|
||||
# )
|
||||
if CFG.LANGUAGE == "en":
|
||||
text_splitter = CharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=20,
|
||||
length_function=len,
|
||||
)
|
||||
else:
|
||||
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||
return loader.load_and_split(text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@ -4,10 +4,11 @@ from typing import List
|
||||
|
||||
from langchain.document_loaders import UnstructuredPowerPointLoader
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import SpacyTextSplitter
|
||||
from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.embedding_engine import SourceEmbedding, register
|
||||
from pilot.embedding_engine.chn_document_splitter import CHNDocumentSplitter
|
||||
|
||||
CFG = Config()
|
||||
|
||||
@ -25,12 +26,20 @@ class PPTEmbedding(SourceEmbedding):
|
||||
def read(self):
|
||||
"""Load from ppt path."""
|
||||
loader = UnstructuredPowerPointLoader(self.file_path)
|
||||
textsplitter = SpacyTextSplitter(
|
||||
pipeline="zh_core_web_sm",
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
# textsplitter = SpacyTextSplitter(
|
||||
# pipeline="zh_core_web_sm",
|
||||
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
# chunk_overlap=200,
|
||||
# )
|
||||
if CFG.LANGUAGE == "en":
|
||||
text_splitter = CharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=20,
|
||||
length_function=len,
|
||||
)
|
||||
else:
|
||||
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||
return loader.load_and_split(text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
@ -4,6 +4,7 @@ from typing import List
|
||||
|
||||
from langchain.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.embedding_engine import SourceEmbedding, register
|
||||
@ -25,10 +26,15 @@ class WordEmbedding(SourceEmbedding):
|
||||
def read(self):
|
||||
"""Load from word path."""
|
||||
loader = UnstructuredWordDocumentLoader(self.file_path)
|
||||
textsplitter = CHNDocumentSplitter(
|
||||
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
||||
)
|
||||
return loader.load_and_split(textsplitter)
|
||||
if CFG.LANGUAGE == "en":
|
||||
text_splitter = CharacterTextSplitter(
|
||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||
chunk_overlap=20,
|
||||
length_function=len,
|
||||
)
|
||||
else:
|
||||
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||
return loader.load_and_split(text_splitter)
|
||||
|
||||
@register
|
||||
def data_process(self, documents: List[Document]):
|
||||
|
Loading…
Reference in New Issue
Block a user