mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-24 19:13:33 +00:00
feat:chunk split method replace
chunk split method replace
This commit is contained in:
parent
a50694bf6e
commit
aad45a6b70
@ -6,7 +6,7 @@ from typing import List
|
|||||||
import markdown
|
import markdown
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
from langchain.schema import Document
|
from langchain.schema import Document
|
||||||
from langchain.text_splitter import SpacyTextSplitter
|
from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter
|
||||||
|
|
||||||
from pilot.configs.config import Config
|
from pilot.configs.config import Config
|
||||||
from pilot.embedding_engine import SourceEmbedding, register
|
from pilot.embedding_engine import SourceEmbedding, register
|
||||||
@ -30,12 +30,20 @@ class MarkdownEmbedding(SourceEmbedding):
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from markdown path."""
|
"""Load from markdown path."""
|
||||||
loader = EncodeTextLoader(self.file_path)
|
loader = EncodeTextLoader(self.file_path)
|
||||||
textsplitter = SpacyTextSplitter(
|
# text_splitter = SpacyTextSplitter(
|
||||||
pipeline="zh_core_web_sm",
|
# pipeline="zh_core_web_sm",
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
chunk_overlap=100,
|
# chunk_overlap=100,
|
||||||
)
|
# )
|
||||||
return loader.load_and_split(textsplitter)
|
if CFG.LANGUAGE == "en":
|
||||||
|
text_splitter = CharacterTextSplitter(
|
||||||
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
|
chunk_overlap=20,
|
||||||
|
length_function=len,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||||
|
return loader.load_and_split(text_splitter)
|
||||||
|
|
||||||
@register
|
@register
|
||||||
def data_process(self, documents: List[Document]):
|
def data_process(self, documents: List[Document]):
|
||||||
|
@ -4,10 +4,11 @@ from typing import List
|
|||||||
|
|
||||||
from langchain.document_loaders import PyPDFLoader
|
from langchain.document_loaders import PyPDFLoader
|
||||||
from langchain.schema import Document
|
from langchain.schema import Document
|
||||||
from langchain.text_splitter import SpacyTextSplitter
|
from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter
|
||||||
|
|
||||||
from pilot.configs.config import Config
|
from pilot.configs.config import Config
|
||||||
from pilot.embedding_engine import SourceEmbedding, register
|
from pilot.embedding_engine import SourceEmbedding, register
|
||||||
|
from pilot.embedding_engine.chn_document_splitter import CHNDocumentSplitter
|
||||||
|
|
||||||
CFG = Config()
|
CFG = Config()
|
||||||
|
|
||||||
@ -28,12 +29,20 @@ class PDFEmbedding(SourceEmbedding):
|
|||||||
# textsplitter = CHNDocumentSplitter(
|
# textsplitter = CHNDocumentSplitter(
|
||||||
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
||||||
# )
|
# )
|
||||||
textsplitter = SpacyTextSplitter(
|
# textsplitter = SpacyTextSplitter(
|
||||||
pipeline="zh_core_web_sm",
|
# pipeline="zh_core_web_sm",
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
chunk_overlap=100,
|
# chunk_overlap=100,
|
||||||
)
|
# )
|
||||||
return loader.load_and_split(textsplitter)
|
if CFG.LANGUAGE == "en":
|
||||||
|
text_splitter = CharacterTextSplitter(
|
||||||
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
|
chunk_overlap=20,
|
||||||
|
length_function=len,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||||
|
return loader.load_and_split(text_splitter)
|
||||||
|
|
||||||
@register
|
@register
|
||||||
def data_process(self, documents: List[Document]):
|
def data_process(self, documents: List[Document]):
|
||||||
|
@ -4,10 +4,11 @@ from typing import List
|
|||||||
|
|
||||||
from langchain.document_loaders import UnstructuredPowerPointLoader
|
from langchain.document_loaders import UnstructuredPowerPointLoader
|
||||||
from langchain.schema import Document
|
from langchain.schema import Document
|
||||||
from langchain.text_splitter import SpacyTextSplitter
|
from langchain.text_splitter import SpacyTextSplitter, CharacterTextSplitter
|
||||||
|
|
||||||
from pilot.configs.config import Config
|
from pilot.configs.config import Config
|
||||||
from pilot.embedding_engine import SourceEmbedding, register
|
from pilot.embedding_engine import SourceEmbedding, register
|
||||||
|
from pilot.embedding_engine.chn_document_splitter import CHNDocumentSplitter
|
||||||
|
|
||||||
CFG = Config()
|
CFG = Config()
|
||||||
|
|
||||||
@ -25,12 +26,20 @@ class PPTEmbedding(SourceEmbedding):
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from ppt path."""
|
"""Load from ppt path."""
|
||||||
loader = UnstructuredPowerPointLoader(self.file_path)
|
loader = UnstructuredPowerPointLoader(self.file_path)
|
||||||
textsplitter = SpacyTextSplitter(
|
# textsplitter = SpacyTextSplitter(
|
||||||
pipeline="zh_core_web_sm",
|
# pipeline="zh_core_web_sm",
|
||||||
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
# chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
chunk_overlap=200,
|
# chunk_overlap=200,
|
||||||
)
|
# )
|
||||||
return loader.load_and_split(textsplitter)
|
if CFG.LANGUAGE == "en":
|
||||||
|
text_splitter = CharacterTextSplitter(
|
||||||
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
|
chunk_overlap=20,
|
||||||
|
length_function=len,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||||
|
return loader.load_and_split(text_splitter)
|
||||||
|
|
||||||
@register
|
@register
|
||||||
def data_process(self, documents: List[Document]):
|
def data_process(self, documents: List[Document]):
|
||||||
|
@ -4,6 +4,7 @@ from typing import List
|
|||||||
|
|
||||||
from langchain.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader
|
from langchain.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader
|
||||||
from langchain.schema import Document
|
from langchain.schema import Document
|
||||||
|
from langchain.text_splitter import CharacterTextSplitter
|
||||||
|
|
||||||
from pilot.configs.config import Config
|
from pilot.configs.config import Config
|
||||||
from pilot.embedding_engine import SourceEmbedding, register
|
from pilot.embedding_engine import SourceEmbedding, register
|
||||||
@ -25,10 +26,15 @@ class WordEmbedding(SourceEmbedding):
|
|||||||
def read(self):
|
def read(self):
|
||||||
"""Load from word path."""
|
"""Load from word path."""
|
||||||
loader = UnstructuredWordDocumentLoader(self.file_path)
|
loader = UnstructuredWordDocumentLoader(self.file_path)
|
||||||
textsplitter = CHNDocumentSplitter(
|
if CFG.LANGUAGE == "en":
|
||||||
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
|
text_splitter = CharacterTextSplitter(
|
||||||
)
|
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
|
||||||
return loader.load_and_split(textsplitter)
|
chunk_overlap=20,
|
||||||
|
length_function=len,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
|
||||||
|
return loader.load_and_split(text_splitter)
|
||||||
|
|
||||||
@register
|
@register
|
||||||
def data_process(self, documents: List[Document]):
|
def data_process(self, documents: List[Document]):
|
||||||
|
Loading…
Reference in New Issue
Block a user