mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-10-22 17:39:02 +00:00
feat(rag): Support rag retriever evaluation (#1291)
This commit is contained in:
32
dbgpt/core/interface/embeddings.py
Normal file
32
dbgpt/core/interface/embeddings.py
Normal file
@@ -0,0 +1,32 @@
|
||||
"""Interface for embedding models."""
|
||||
import asyncio
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List
|
||||
|
||||
|
||||
class Embeddings(ABC):
|
||||
"""Interface for embedding models.
|
||||
|
||||
Refer to `Langchain Embeddings <https://github.com/langchain-ai/langchain/tree/
|
||||
master/libs/langchain/langchain/embeddings>`_.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed search docs."""
|
||||
|
||||
@abstractmethod
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed query text."""
|
||||
|
||||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Asynchronous Embed search docs."""
|
||||
return await asyncio.get_running_loop().run_in_executor(
|
||||
None, self.embed_documents, texts
|
||||
)
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Asynchronous Embed query text."""
|
||||
return await asyncio.get_running_loop().run_in_executor(
|
||||
None, self.embed_query, text
|
||||
)
|
Reference in New Issue
Block a user