mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-08-19 08:47:32 +00:00
update:milvus batch
This commit is contained in:
parent
85906a3c45
commit
adb8a5a316
@ -2,9 +2,6 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.vector_store.connector import VectorStoreConnector
|
||||
|
||||
@ -35,9 +32,7 @@ class SourceEmbedding(ABC):
|
||||
self.model_name = model_name
|
||||
self.vector_store_config = vector_store_config
|
||||
self.embedding_args = embedding_args
|
||||
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
|
||||
|
||||
vector_store_config["embeddings"] = self.embeddings
|
||||
self.embeddings = vector_store_config["embeddings"]
|
||||
self.vector_client = VectorStoreConnector(
|
||||
CFG.VECTOR_STORE_TYPE, vector_store_config
|
||||
)
|
||||
|
@ -6,6 +6,7 @@ from pymilvus import Collection, DataType, connections, utility
|
||||
from pilot.configs.config import Config
|
||||
from pilot.vector_store.vector_store_base import VectorStoreBase
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
@ -107,6 +108,7 @@ class MilvusStore(VectorStoreBase):
|
||||
self.col = Collection(
|
||||
self.collection_name, using=self.alias
|
||||
)
|
||||
self.fields = []
|
||||
for x in self.col.schema.fields:
|
||||
self.fields.append(x.name)
|
||||
if x.auto_id:
|
||||
@ -131,7 +133,7 @@ class MilvusStore(VectorStoreBase):
|
||||
max_length = max(max_length, len(y))
|
||||
# Create the text field
|
||||
fields.append(
|
||||
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 1)
|
||||
FieldSchema(text_field, DataType.VARCHAR, max_length=max_length + 100)
|
||||
)
|
||||
# primary key field
|
||||
fields.append(
|
||||
@ -248,7 +250,11 @@ class MilvusStore(VectorStoreBase):
|
||||
|
||||
def load_document(self, documents) -> None:
|
||||
"""load document in vector database."""
|
||||
self.init_schema_and_load(self.collection_name, documents)
|
||||
batch_size = 500
|
||||
batched_list = [documents[i:i + batch_size] for i in range(0, len(documents), batch_size)]
|
||||
# docs = []
|
||||
for doc_batch in batched_list:
|
||||
self.init_schema_and_load(self.collection_name, doc_batch)
|
||||
|
||||
def similar_search(self, text, topk) -> None:
|
||||
"""similar_search in vector database."""
|
||||
|
Loading…
Reference in New Issue
Block a user