mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-11 13:58:58 +00:00
feat(feedback): feedback upgrade
This commit is contained in:
@@ -12,12 +12,6 @@ ALTER TABLE gpts_app ADD COLUMN `admins` text DEFAULT NULL COMMENT 'administrat
|
||||
ALTER TABLE connect_config ADD COLUMN `user_name` varchar(255) DEFAULT NULL COMMENT 'user name';
|
||||
ALTER TABLE connect_config ADD COLUMN `user_id` varchar(255) DEFAULT NULL COMMENT 'user id';
|
||||
|
||||
|
||||
--knowledge_space
|
||||
ALTER TABLE knowledge_space ADD COLUMN `user_id` varchar(255) DEFAULT NULL COMMENT 'knowledge space owner';
|
||||
ALTER TABLE knowledge_space ADD COLUMN `user_ids` text DEFAULT NULL COMMENT 'knowledge space members';
|
||||
|
||||
|
||||
-- document_chunk
|
||||
ALTER TABLE document_chunk ADD COLUMN `questions` text DEFAULT NULL COMMENT 'chunk related questions';
|
||||
|
||||
|
@@ -172,7 +172,6 @@ class KnowledgeService:
|
||||
ks.context = argument_request.argument
|
||||
return knowledge_space_dao.update_knowledge_space(ks)
|
||||
|
||||
|
||||
def get_knowledge_documents(self, space, request: DocumentQueryRequest):
|
||||
"""get knowledge documents
|
||||
Args:
|
||||
|
@@ -76,9 +76,7 @@ class ChatKnowledge(BaseChat):
|
||||
embedding_fn = embedding_factory.create(
|
||||
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
|
||||
)
|
||||
from dbgpt.serve.rag.models.models import (
|
||||
KnowledgeSpaceDao,
|
||||
)
|
||||
from dbgpt.serve.rag.models.models import KnowledgeSpaceDao
|
||||
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
||||
|
||||
spaces = KnowledgeSpaceDao().get_knowledge_space_by_ids([self.knowledge_space])
|
||||
|
@@ -156,6 +156,14 @@ class MessageVo(BaseModel):
|
||||
],
|
||||
)
|
||||
|
||||
feedback: Optional[Dict] = Field(
|
||||
default={},
|
||||
description="feedback info",
|
||||
examples=[
|
||||
"{}",
|
||||
],
|
||||
)
|
||||
|
||||
def to_dict(self, **kwargs) -> Dict[str, Any]:
|
||||
"""Convert the model to a dictionary"""
|
||||
return model_to_dict(self, **kwargs)
|
||||
|
@@ -14,6 +14,7 @@ from dbgpt.storage.metadata import BaseDao
|
||||
from dbgpt.storage.metadata._base_dao import REQ, RES
|
||||
from dbgpt.util.pagination_utils import PaginationResult
|
||||
|
||||
from ...feedback.api.endpoints import get_service
|
||||
from ..api.schemas import MessageVo, ServeRequest, ServerResponse
|
||||
from ..config import SERVE_CONFIG_KEY_PREFIX, SERVE_SERVICE_COMPONENT_NAME, ServeConfig
|
||||
from ..models.models import ServeDao, ServeEntity
|
||||
@@ -201,13 +202,27 @@ class Service(BaseService[ServeEntity, ServeRequest, ServerResponse]):
|
||||
conv: StorageConversation = self.create_storage_conv(request)
|
||||
result = []
|
||||
messages = _append_view_messages(conv.messages)
|
||||
|
||||
feedback_service = get_service()
|
||||
|
||||
feedbacks = feedback_service.list_conv_feedbacks(conv_uid=request.conv_uid)
|
||||
fb_map = {fb.message_id: fb.to_dict() for fb in feedbacks}
|
||||
|
||||
for msg in messages:
|
||||
feedback = {}
|
||||
if (
|
||||
msg.round_index is not None
|
||||
and fb_map.get(str(msg.round_index)) is not None
|
||||
):
|
||||
feedback = fb_map.get(str(msg.round_index))
|
||||
|
||||
result.append(
|
||||
MessageVo(
|
||||
role=msg.type,
|
||||
context=msg.content,
|
||||
order=msg.round_index,
|
||||
model_name=self.config.default_model,
|
||||
feedback=feedback,
|
||||
)
|
||||
)
|
||||
return result
|
||||
|
@@ -105,7 +105,7 @@ class Service(BaseService[ServeEntity, ServeRequest, ServerResponse]):
|
||||
feedbacks = self.dao.get_list(
|
||||
ServeRequest(conv_uid=conv_uid, feedback_type=feedback_type)
|
||||
)
|
||||
return [ServerResponse.from_entity(item) for item in feedbacks]
|
||||
return feedbacks
|
||||
|
||||
def create_or_update(self, request: ServeRequest) -> ServerResponse:
|
||||
"""
|
||||
|
@@ -5,7 +5,7 @@ from dbgpt.component import ComponentType
|
||||
from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG
|
||||
from dbgpt.core import Chunk
|
||||
from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
|
||||
from dbgpt.rag.retriever import EmbeddingRetriever, Ranker, QueryRewrite
|
||||
from dbgpt.rag.retriever import EmbeddingRetriever, QueryRewrite, Ranker
|
||||
from dbgpt.rag.retriever.base import BaseRetriever
|
||||
from dbgpt.serve.rag.connector import VectorStoreConnector
|
||||
from dbgpt.serve.rag.models.models import KnowledgeSpaceDao
|
||||
@@ -47,6 +47,7 @@ class KnowledgeSpaceRetriever(BaseRetriever):
|
||||
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
|
||||
)
|
||||
from dbgpt.storage.vector_store.base import VectorStoreConfig
|
||||
|
||||
space_dao = KnowledgeSpaceDao()
|
||||
space = space_dao.get_one({"id": space_id})
|
||||
config = VectorStoreConfig(name=space.name, embedding_fn=embedding_fn)
|
||||
@@ -58,18 +59,17 @@ class KnowledgeSpaceRetriever(BaseRetriever):
|
||||
ComponentType.EXECUTOR_DEFAULT, ExecutorFactory
|
||||
).create()
|
||||
|
||||
self._retriever_chain = RetrieverChain(retrievers=[
|
||||
QARetriever(space_id=space_id,
|
||||
top_k=top_k,
|
||||
embedding_fn=embedding_fn
|
||||
),
|
||||
EmbeddingRetriever(
|
||||
index_store=self._vector_store_connector.index_client,
|
||||
top_k=top_k,
|
||||
query_rewrite=self._query_rewrite,
|
||||
rerank=self._rerank
|
||||
)
|
||||
], executor=self._executor
|
||||
self._retriever_chain = RetrieverChain(
|
||||
retrievers=[
|
||||
QARetriever(space_id=space_id, top_k=top_k, embedding_fn=embedding_fn),
|
||||
EmbeddingRetriever(
|
||||
index_store=self._vector_store_connector.index_client,
|
||||
top_k=top_k,
|
||||
query_rewrite=self._query_rewrite,
|
||||
rerank=self._rerank,
|
||||
),
|
||||
],
|
||||
executor=self._executor,
|
||||
)
|
||||
|
||||
def _retrieve(
|
||||
@@ -84,9 +84,7 @@ class KnowledgeSpaceRetriever(BaseRetriever):
|
||||
Return:
|
||||
List[Chunk]: list of chunks
|
||||
"""
|
||||
candidates = self._retriever_chain.retrieve(
|
||||
query=query, filters=filters
|
||||
)
|
||||
candidates = self._retriever_chain.retrieve(query=query, filters=filters)
|
||||
return candidates
|
||||
|
||||
def _retrieve_with_score(
|
||||
|
@@ -1,12 +1,11 @@
|
||||
import ast
|
||||
import json
|
||||
import logging
|
||||
from typing import List, Optional, Any
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from dbgpt._private.config import Config
|
||||
from dbgpt.app.knowledge.chunk_db import DocumentChunkDao, DocumentChunkEntity
|
||||
from dbgpt.app.knowledge.document_db import KnowledgeDocumentDao
|
||||
|
||||
from dbgpt.component import ComponentType
|
||||
from dbgpt.core import Chunk
|
||||
from dbgpt.rag.retriever.base import BaseRetriever
|
||||
@@ -45,9 +44,7 @@ class QARetriever(BaseRetriever):
|
||||
self._chunk_dao = DocumentChunkDao()
|
||||
self._embedding_fn = embedding_fn
|
||||
|
||||
space = self._space_dao.get_one(
|
||||
{"id": space_id}
|
||||
)
|
||||
space = self._space_dao.get_one({"id": space_id})
|
||||
if not space:
|
||||
raise ValueError("space not found")
|
||||
self.documents = self._document_dao.get_list({"space": space.name})
|
||||
@@ -72,16 +69,16 @@ class QARetriever(BaseRetriever):
|
||||
questions = json.loads(doc.questions)
|
||||
if query in questions:
|
||||
chunks = self._chunk_dao.get_document_chunks(
|
||||
DocumentChunkEntity(
|
||||
document_id=doc.id
|
||||
),
|
||||
page_size=CHUNK_PAGE_SIZE
|
||||
DocumentChunkEntity(document_id=doc.id),
|
||||
page_size=CHUNK_PAGE_SIZE,
|
||||
)
|
||||
candidates = [
|
||||
Chunk(content=chunk.content,
|
||||
metadata=ast.literal_eval(chunk.meta_info),
|
||||
retriever=self.name(),
|
||||
score=0.0)
|
||||
Chunk(
|
||||
content=chunk.content,
|
||||
metadata=ast.literal_eval(chunk.meta_info),
|
||||
retriever=self.name(),
|
||||
score=0.0,
|
||||
)
|
||||
for chunk in chunks
|
||||
]
|
||||
candidate_results.extend(
|
||||
@@ -109,8 +106,7 @@ class QARetriever(BaseRetriever):
|
||||
doc_ids = [doc.id for doc in self.documents]
|
||||
query_param = DocumentChunkEntity()
|
||||
chunks = self._chunk_dao.get_chunks_with_questions(
|
||||
query=query_param,
|
||||
document_ids=doc_ids
|
||||
query=query_param, document_ids=doc_ids
|
||||
)
|
||||
for chunk in chunks:
|
||||
if chunk.questions:
|
||||
@@ -118,14 +114,13 @@ class QARetriever(BaseRetriever):
|
||||
if query in questions:
|
||||
logger.info(f"qa chunk hit:{chunk}, question:{query}")
|
||||
candidate_results.append(
|
||||
Chunk(content=chunk.content,
|
||||
chunk_id=str(chunk.id),
|
||||
metadata={
|
||||
"prop_field": ast.literal_eval(chunk.meta_info)
|
||||
},
|
||||
retriever=self.name(),
|
||||
score=1.0
|
||||
)
|
||||
Chunk(
|
||||
content=chunk.content,
|
||||
chunk_id=str(chunk.id),
|
||||
metadata={"prop_field": ast.literal_eval(chunk.meta_info)},
|
||||
retriever=self.name(),
|
||||
score=1.0,
|
||||
)
|
||||
)
|
||||
if len(candidate_results) > 0:
|
||||
return self._cosine_similarity_rerank(candidate_results, query)
|
||||
@@ -137,16 +132,16 @@ class QARetriever(BaseRetriever):
|
||||
logger.info(f"qa document hit:{doc}, question:{query}")
|
||||
chunks = self._chunk_dao.get_document_chunks(
|
||||
DocumentChunkEntity(document_id=doc.id),
|
||||
page_size=CHUNK_PAGE_SIZE
|
||||
page_size=CHUNK_PAGE_SIZE,
|
||||
)
|
||||
candidates_with_scores = [
|
||||
Chunk(content=chunk.content,
|
||||
chunk_id=str(chunk.id),
|
||||
metadata={
|
||||
"prop_field": ast.literal_eval(chunk.meta_info)
|
||||
},
|
||||
retriever=self.name(),
|
||||
score=1.0)
|
||||
Chunk(
|
||||
content=chunk.content,
|
||||
chunk_id=str(chunk.id),
|
||||
metadata={"prop_field": ast.literal_eval(chunk.meta_info)},
|
||||
retriever=self.name(),
|
||||
score=1.0,
|
||||
)
|
||||
for chunk in chunks
|
||||
]
|
||||
candidate_results.extend(
|
||||
@@ -188,26 +183,29 @@ class QARetriever(BaseRetriever):
|
||||
)
|
||||
return candidates_with_score
|
||||
|
||||
def _cosine_similarity_rerank(self, candidates_with_scores: List[Chunk]
|
||||
, query: str) -> List[Chunk]:
|
||||
def _cosine_similarity_rerank(
|
||||
self, candidates_with_scores: List[Chunk], query: str
|
||||
) -> List[Chunk]:
|
||||
"""Rerank candidates using cosine similarity."""
|
||||
if len(candidates_with_scores) > self._top_k:
|
||||
for candidate in candidates_with_scores:
|
||||
similarity = calculate_cosine_similarity(
|
||||
embeddings=self._embedding_fn,
|
||||
prediction=query,
|
||||
contexts=[candidate.content]
|
||||
contexts=[candidate.content],
|
||||
)
|
||||
score = float(similarity.mean())
|
||||
candidate.score = score
|
||||
candidates_with_scores.sort(key=lambda x: x.score, reverse=True)
|
||||
candidates_with_scores = candidates_with_scores[: self._top_k]
|
||||
candidates_with_scores = [
|
||||
Chunk(content=candidate.content,
|
||||
chunk_id=candidate.chunk_id,
|
||||
metadata=candidate.metadata,
|
||||
retriever=self.name(),
|
||||
score=1.0)
|
||||
Chunk(
|
||||
content=candidate.content,
|
||||
chunk_id=candidate.chunk_id,
|
||||
metadata=candidate.metadata,
|
||||
retriever=self.name(),
|
||||
score=1.0,
|
||||
)
|
||||
for candidate in candidates_with_scores
|
||||
]
|
||||
return candidates_with_scores
|
||||
|
@@ -1,5 +1,5 @@
|
||||
from concurrent.futures import ThreadPoolExecutor, Executor
|
||||
from typing import Optional, List
|
||||
from concurrent.futures import Executor, ThreadPoolExecutor
|
||||
from typing import List, Optional
|
||||
|
||||
from dbgpt.core import Chunk
|
||||
from dbgpt.rag.retriever.base import BaseRetriever
|
||||
@@ -10,14 +10,18 @@ from dbgpt.util.executor_utils import blocking_func_to_async
|
||||
class RetrieverChain(BaseRetriever):
|
||||
"""Retriever chain class."""
|
||||
|
||||
def __init__(self, retrievers: Optional[List[BaseRetriever]] = None,
|
||||
executor: Optional[Executor] = None):
|
||||
def __init__(
|
||||
self,
|
||||
retrievers: Optional[List[BaseRetriever]] = None,
|
||||
executor: Optional[Executor] = None,
|
||||
):
|
||||
"""Create retriever chain instance."""
|
||||
self._retrievers = retrievers or []
|
||||
self._executor = executor or ThreadPoolExecutor()
|
||||
|
||||
def _retrieve(self, query: str, filters: Optional[MetadataFilters] = None) -> List[
|
||||
Chunk]:
|
||||
def _retrieve(
|
||||
self, query: str, filters: Optional[MetadataFilters] = None
|
||||
) -> List[Chunk]:
|
||||
"""Retrieve knowledge chunks.
|
||||
Args:
|
||||
query (str): query text
|
||||
@@ -26,15 +30,14 @@ class RetrieverChain(BaseRetriever):
|
||||
List[Chunk]: list of chunks
|
||||
"""
|
||||
for retriever in self._retrievers:
|
||||
candidates = retriever.retrieve(
|
||||
query, filters
|
||||
)
|
||||
candidates = retriever.retrieve(query, filters)
|
||||
if candidates:
|
||||
return candidates
|
||||
return []
|
||||
|
||||
async def _aretrieve(self, query: str, filters: Optional[MetadataFilters] = None) -> \
|
||||
List[Chunk]:
|
||||
async def _aretrieve(
|
||||
self, query: str, filters: Optional[MetadataFilters] = None
|
||||
) -> List[Chunk]:
|
||||
"""Retrieve knowledge chunks.
|
||||
Args:
|
||||
query (str): query text
|
||||
@@ -47,13 +50,18 @@ class RetrieverChain(BaseRetriever):
|
||||
)
|
||||
return candidates
|
||||
|
||||
def _retrieve_with_score(self, query: str, score_threshold: float, filters: Optional[MetadataFilters] = None) -> List[Chunk]:
|
||||
def _retrieve_with_score(
|
||||
self,
|
||||
query: str,
|
||||
score_threshold: float,
|
||||
filters: Optional[MetadataFilters] = None,
|
||||
) -> List[Chunk]:
|
||||
"""Retrieve knowledge chunks.
|
||||
Args:
|
||||
query (str): query text
|
||||
filters: (Optional[MetadataFilters]) metadata filters.
|
||||
Return:
|
||||
List[Chunk]: list of chunks
|
||||
Args:
|
||||
query (str): query text
|
||||
filters: (Optional[MetadataFilters]) metadata filters.
|
||||
Return:
|
||||
List[Chunk]: list of chunks
|
||||
"""
|
||||
for retriever in self._retrievers:
|
||||
candidates_with_scores = retriever.retrieve_with_scores(
|
||||
@@ -63,14 +71,19 @@ class RetrieverChain(BaseRetriever):
|
||||
return candidates_with_scores
|
||||
return []
|
||||
|
||||
async def _aretrieve_with_score(self, query: str, score_threshold: float, filters: Optional[MetadataFilters] = None) -> List[Chunk]:
|
||||
async def _aretrieve_with_score(
|
||||
self,
|
||||
query: str,
|
||||
score_threshold: float,
|
||||
filters: Optional[MetadataFilters] = None,
|
||||
) -> List[Chunk]:
|
||||
"""Retrieve knowledge chunks with score.
|
||||
Args:
|
||||
query (str): query text
|
||||
score_threshold (float): score threshold
|
||||
filters: (Optional[MetadataFilters]) metadata filters.
|
||||
Return:
|
||||
List[Chunk]: list of chunks with score
|
||||
Args:
|
||||
query (str): query text
|
||||
score_threshold (float): score threshold
|
||||
filters: (Optional[MetadataFilters]) metadata filters.
|
||||
Return:
|
||||
List[Chunk]: list of chunks with score
|
||||
"""
|
||||
candidates_with_score = await blocking_func_to_async(
|
||||
self._executor, self._retrieve_with_score, query, score_threshold, filters
|
||||
|
Reference in New Issue
Block a user