Merge branch 'main' into Agent_Hub_Dev

# Conflicts:
#	README.zh.md
This commit is contained in:
yhjun1026 2023-10-23 16:07:34 +08:00
commit afb5fd1445
11 changed files with 363 additions and 358 deletions

132
README.md
View File

@ -62,24 +62,12 @@ Run on an RTX 4090 GPU.
##### LLM Management
![llm_manage](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/501d6b3f-c4ce-4197-9a6f-f016f8150a11)
##### FastChat && vLLM
![fastchat_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/ca392904-a854-46ff-b93a-b6796c136b0b)
![vllm](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/0c9475d2-45ee-4573-aa5a-814f7fd40213)
##### Trace
![trace_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/69bd14b8-14d0-4ca9-9cb7-6cef44a2bc93)
##### Chat Knowledge
![kbqa_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/72266a48-edef-4c6d-88c6-fbb1a24a6c3e)
#### Chat with data, and figure charts.
![db plugins demonstration](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/4113ac15-83c2-4350-86c0-5fc795677abd)
<p align="left">
<img src="./assets/chat_excel/chat_excel_6.png" width="800px" />
</p>
<p align="left">
<img src="./assets/chat_dashboard/chat_dashboard_2.png" width="800px" />
</p>
## Install
![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)
![Linux](https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black)
@ -109,66 +97,61 @@ Run on an RTX 4090 GPU.
## Features
Currently, we have released multiple key features, which are listed below to demonstrate our current capabilities:
- SQL language capabilities
- SQL generation
- SQL diagnosis
- Private domain Q&A and data processing
- Knowledge Management(We currently support many document formats: txt, pdf, md, html, doc, ppt, and url.)
- ChatDB
- ChatExcel
- ChatDashboard
- Multi-Agents&Plugins
- Unified vector storage/indexing of knowledge base
- Support for unstructured data
- PDF
- TXT
- Markdown
- CSV
- DOC
- PPT
- WebURL
- Multi LLMs Support, Supports multiple large language models, currently supporting
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
- [baichuan2-7b/baichuan2-13b](https://huggingface.co/baichuan-inc)
- [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
- [Qwen/Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/)
- [Vicuna](https://huggingface.co/Tribbiani/vicuna-13b)
- [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
- [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
- [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
- [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)
- [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
- [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)
- [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
- [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
- [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)
- [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
- [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
- [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
- [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5)
- [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b)
- [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
- [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
- [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
- [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
- [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
- [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)
- [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
- [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
- [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
- [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta)
- [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
- [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [all models of OpenOrca](https://huggingface.co/Open-Orca)
- [Spicyboros](https://huggingface.co/jondurbin/spicyboros-7b-2.2?not-for-all-audiences=true) + [airoboros 2.2](https://huggingface.co/jondurbin/airoboros-l2-13b-2.2)
- [VMware&#39;s OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-llama-7b-open-instruct)
- Private KBQA & data processing
- Support API Proxy LLMs
- [x] [ChatGPT](https://api.openai.com/)
- [x] [Tongyi](https://www.aliyun.com/product/dashscope)
- [x] [Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan)
- [x] [ChatGLM](http://open.bigmodel.cn/)
The DB-GPT project offers a range of features to enhance knowledge base construction and enable efficient storage and retrieval of both structured and unstructured data. These include built-in support for uploading multiple file formats, the ability to integrate plug-ins for custom data extraction, and unified vector storage and retrieval capabilities for managing large volumes of information.
- Multiple data sources & visualization
The DB-GPT project enables seamless natural language interaction with various data sources, including Excel, databases, and data warehouses. It facilitates effortless querying and retrieval of information from these sources, allowing users to engage in intuitive conversations and obtain insights. Additionally, DB-GPT supports the generation of analysis reports, providing users with valuable summaries and interpretations of the data.
- Multi-Agents&Plugins
Supports custom plug-ins to perform tasks, natively supports the Auto-GPT plug-in model, and the Agents protocol adopts the Agent Protocol standard
- Fine-tuning text2SQL
An automated fine-tuning lightweight framework built around large language models, Text2SQL data sets, LoRA/QLoRA/Pturning and other fine-tuning methods, making TextSQL fine-tuning as convenient as an assembly line. [DB-GPT-Hub](https://github.com/eosphoros-ai/DB-GPT-Hub)
- Multi LLMs Support, Supports multiple large language models, currently supporting
Massive model support, including dozens of large language models such as open source and API agents. Such as LLaMA/LLaMA2, Baichuan, ChatGLM, Wenxin, Tongyi, Zhipu, etc.
- [Vicuna](https://huggingface.co/Tribbiani/vicuna-13b)
- [vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)
- [LLama2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
- [baichuan2-13b](https://huggingface.co/baichuan-inc)
- [baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
- [chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
- [chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
- [falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- [internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
- [Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/)
- [RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
- [CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
- [dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
- [h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
- [fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
- [mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
- [gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
- [Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
- [codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
- [guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
- [WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
- [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
- [Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
- [OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-llama-7b-open-instruct)
etc.
- Support API Proxy LLMs
- [x] [ChatGPT](https://api.openai.com/)
- [x] [Tongyi](https://www.aliyun.com/product/dashscope)
- [x] [Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan)
- [x] [ChatGLM](http://open.bigmodel.cn/)
- Privacy and security
The privacy and security of data are ensured through various technologies such as privatized large models and proxy desensitization.
- Support Datasources
@ -209,6 +192,11 @@ The core capabilities mainly consist of the following parts:
6. Privacy & Secure: You can be assured that there is no risk of data leakage, and your data is 100% private and secure.
7. Text2SQL: We enhance the Text-to-SQL performance by applying Supervised Fine-Tuning (SFT) on large language models
### RAG-IN-Action
<p align="center">
<img src="./assets/RAG-IN-ACTION.jpg" width="800px" />
</p>
### SubModule
- [DB-GPT-Hub](https://github.com/eosphoros-ai/DB-GPT-Hub) Text-to-SQL performance by applying Supervised Fine-Tuning (SFT) on large language models.
- [DB-GPT-Plugins](https://github.com/eosphoros-ai/DB-GPT-Plugins) DB-GPT Plugins, Can run autogpt plugin directly

View File

@ -59,21 +59,19 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目使用本地
##### Chat Excel
![excel](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/0474d220-2a9f-449f-a940-92c8a25af390)
##### Chat Plugin
#### Chat Plugin
![auto_plugin_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/7d95c347-f4b7-4fb6-8dd2-c1c02babaa56)
##### LLM Management
#### LLM Management
![llm_manage](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/501d6b3f-c4ce-4197-9a6f-f016f8150a11)
##### FastChat && vLLM
![fastchat_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/ca392904-a854-46ff-b93a-b6796c136b0b)
##### Trace
#### FastChat && vLLM
![vllm](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/0c9475d2-45ee-4573-aa5a-814f7fd40213)
#### Trace
![trace_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/69bd14b8-14d0-4ca9-9cb7-6cef44a2bc93)
##### Chat Knowledge
#### Chat Knowledge
![kbqa_new](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/72266a48-edef-4c6d-88c6-fbb1a24a6c3e)
#### 根据自然语言对话生成分析图表
![db plugins demonstration](https://github.com/eosphoros-ai/DB-GPT/assets/13723926/4113ac15-83c2-4350-86c0-5fc795677abd)
<p align="left">
<img src="./assets/chat_excel/chat_excel_6.png" width="800px" />
</p>
@ -86,32 +84,6 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目使用本地
<img src="./assets/chat_dashboard/chat_dashboard_2.png" width="800px" />
</p>
#### 根据自然语言对话生成SQL
<p align="left">
<img src="./assets/chatSQL.png" width="800px" />
</p>
#### 与数据库元数据信息进行对话, 生成准确SQL语句
<p align="left">
<img src="./assets/chatdb.png" width="800px" />
</p>
#### 与数据对话, 直接查看执行结果
<p align="left">
<img src="./assets/chatdata.png" width="800px" />
</p>
#### 知识库管理
<p align="left">
<img src="./assets/ks.png" width="800px" />
</p>
#### 根据知识库对话, 比如pdf、csv、txt、words等等.
<p align="left">
<img src="./assets/chat_knowledge_zh.png" width="800px" />
</p>
## 安装
![Docker](https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white)
@ -142,61 +114,59 @@ DB-GPT 是一个开源的以数据库为基础的GPT实验项目使用本地
目前我们已经发布了多种关键的特性,这里一一列举展示一下当前发布的能力。
- SQL 语言能力
- SQL生成
- SQL诊断
- 私域问答与数据处理
- 知识库管理(目前支持 txt, pdf, md, html, doc, ppt, and url)
- 数据库知识问答
- 数据处理
- 数据库对话
- Chat2Dashboard
- 插件模型
- 知识库统一向量存储/索引
- 非结构化数据支持包括PDF、MarkDown、CSV、WebURL
- 多模型支持与管理
- 支持多种大语言模型, 当前已支持如下模型:
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
- [baichuan2-7b/baichuan2-13b](https://huggingface.co/baichuan-inc)
- [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
- [Qwen/Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/)
- [Vicuna](https://huggingface.co/Tribbiani/vicuna-13b)
- [BlinkDL/RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
- [camel-ai/CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
- [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
- [FreedomIntelligence/phoenix-inst-chat-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b)
- [h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
- [lcw99/polyglot-ko-12.8b-chang-instruct-chat](https://huggingface.co/lcw99/polyglot-ko-12.8b-chang-instruct-chat)
- [lmsys/fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
- [mosaicml/mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
- [Neutralzz/BiLLa-7B-SFT](https://huggingface.co/Neutralzz/BiLLa-7B-SFT)
- [nomic-ai/gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
- [NousResearch/Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
- [openaccess-ai-collective/manticore-13b-chat-pyg](https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg)
- [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5)
- [project-baize/baize-v2-7b](https://huggingface.co/project-baize/baize-v2-7b)
- [Salesforce/codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
- [StabilityAI/stablelm-tuned-alpha-7b](https://huggingface.co/stabilityai/stablelm-tuned-alpha-7b)
- [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
- [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
- [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- [timdettmers/guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
- [togethercomputer/RedPajama-INCITE-7B-Chat](https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat)
- [WizardLM/WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
- [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
- [baichuan-inc/baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
- [HuggingFaceH4/starchat-beta](https://huggingface.co/HuggingFaceH4/starchat-beta)
- [FlagAlpha/Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
- [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [all models of OpenOrca](https://huggingface.co/Open-Orca)
- [Spicyboros](https://huggingface.co/jondurbin/spicyboros-7b-2.2?not-for-all-audiences=true) + [airoboros 2.2](https://huggingface.co/jondurbin/airoboros-l2-13b-2.2)
- [VMware&#39;s OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-llama-7b-open-instruct)
- 私域问答&数据处理
- 支持在线代理模型
- [x] [ChatGPT](https://api.openai.com/)
- [x] [Tongyi](https://www.aliyun.com/product/dashscope)
- [x] [Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan)
- [x] [ChatGLM](http://open.bigmodel.cn/)
支持内置、多文件格式上传、插件自抓取等方式自定义构建知识库,对海量结构化,非结构化数据做统一向量存储与检索
- 多数据源&可视化
支持自然语言与Excel、数据库、数仓等多种数据源交互并支持分析报告。
- 自动化微调
围绕大语言模型、Text2SQL数据集、LoRA/QLoRA/Pturning等微调方法构建的自动化微调轻量框架, 让TextSQL微调像流水线一样方便。详见: [DB-GPT-Hub](https://github.com/eosphoros-ai/DB-GPT-Hub)
- Multi-Agents&Plugins
支持自定义插件执行任务原生支持Auto-GPT插件模型Agents协议采用Agent Protocol标准
- 多模型支持与管理
海量模型支持包括开源、API代理等几十种大语言模型。如LLaMA/LLaMA2、Baichuan、ChatGLM、文心、通义、智谱等。
- 支持多种大语言模型, 当前已支持如下模型:
- [Vicuna](https://huggingface.co/Tribbiani/vicuna-13b)
- [vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5)
- [LLama2](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
- [baichuan2-13b](https://huggingface.co/baichuan-inc)
- [baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)
- [chatglm-6b](https://huggingface.co/THUDM/chatglm-6b)
- [chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b)
- [falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
- [internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b)
- [Qwen-7B-Chat/Qwen-14B-Chat](https://huggingface.co/Qwen/)
- [RWKV-4-Raven](https://huggingface.co/BlinkDL/rwkv-4-raven)
- [CAMEL-13B-Combined-Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
- [dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
- [h2ogpt-gm-oasst1-en-2048-open-llama-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b)
- [fastchat-t5-3b-v1.0](https://huggingface.co/lmsys/fastchat-t5)
- [mpt-7b-chat](https://huggingface.co/mosaicml/mpt-7b-chat)
- [gpt4all-13b-snoozy](https://huggingface.co/nomic-ai/gpt4all-13b-snoozy)
- [Nous-Hermes-13b](https://huggingface.co/NousResearch/Nous-Hermes-13b)
- [codet5p-6b](https://huggingface.co/Salesforce/codet5p-6b)
- [guanaco-33b-merged](https://huggingface.co/timdettmers/guanaco-33b-merged)
- [WizardLM-13B-V1.0](https://huggingface.co/WizardLM/WizardLM-13B-V1.0)
- [WizardLM/WizardCoder-15B-V1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)
- [Llama2-Chinese-13b-Chat](https://huggingface.co/FlagAlpha/Llama2-Chinese-13b-Chat)
- [OpenLLaMa OpenInstruct](https://huggingface.co/VMware/open-llama-7b-open-instruct)
- 支持在线代理模型
- [x] [ChatGPT](https://api.openai.com/)
- [x] [Tongyi](https://www.aliyun.com/product/dashscope)
- [x] [Wenxin](https://cloud.baidu.com/product/wenxinworkshop?track=dingbutonglan)
- [x] [ChatGLM](http://open.bigmodel.cn/)
- 隐私安全
通过私有化大模型、代理脱敏等多种技术保障数据的隐私安全。
- 支持数据源
@ -227,7 +197,7 @@ DB-GPT基于 [FastChat](https://github.com/lm-sys/FastChat) 构建大模型运
整个DB-GPT的架构如下图所示
<p align="center">
<img src="./assets/DB-GPT.png" width="800px" />
<img src="./assets/DB-GPT_zh.png" width="800px" />
</p>
核心能力主要有以下几个部分。
@ -239,6 +209,11 @@ DB-GPT基于 [FastChat](https://github.com/lm-sys/FastChat) 构建大模型运
6. 隐私和安全: 您可以放心没有数据泄露的风险您的数据100%私密和安全。
7. Text2SQL: 我们通过在大型语言模型监督微调SFT来增强文本到SQL的性能
### RAG生产落地实践架构
<p align="center">
<img src="./assets/RAG-IN-ACTION.jpg" width="800px" />
</p>
### 子模块
- [DB-GPT-Hub](https://github.com/csunny/DB-GPT-Hub) 通过微调来持续提升Text2SQL效果
- [DB-GPT-Plugins](https://github.com/csunny/DB-GPT-Plugins) DB-GPT 插件仓库, 兼容Auto-GPT

Binary file not shown.

Before

Width:  |  Height:  |  Size: 232 KiB

After

Width:  |  Height:  |  Size: 686 KiB

BIN
assets/DB-GPT_zh.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 684 KiB

BIN
assets/RAG-IN-ACTION.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@ -1,7 +1,7 @@
LLM USE FAQ
==================================
##### Q1:how to use openai chatgpt service
change your LLM_MODEL
change your LLM_MODEL in `.env`
````shell
LLM_MODEL=proxyllm
````
@ -16,7 +16,6 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions
make sure your openapi API_KEY is available
##### Q2 What difference between `python dbgpt_server --light` and `python dbgpt_server`
```{note}
* `python dbgpt_server --light` dbgpt_server does not start the llm service. Users can deploy the llm service separately by using `python llmserver`, and dbgpt_server accesses the llm service through set the LLM_SERVER environment variable in .env. The purpose is to allow for the separate deployment of dbgpt's backend service and llm service.
@ -24,7 +23,19 @@ make sure your openapi API_KEY is available
```
##### Q3 how to use MultiGPUs
```{tip}
If you want to access an external LLM service(deployed by DB-GPT), you need to
1.set the variables LLM_MODEL=YOUR_MODEL_NAME, MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env file.
2.execute dbgpt_server.py in light mode
python pilot/server/dbgpt_server.py --light
```
##### Q3 How to use MultiGPUs
DB-GPT will use all available gpu by default. And you can modify the setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file
to use the specific gpu IDs.

View File

@ -60,12 +60,8 @@ For the entire installation process of DB-GPT, we use the miniconda3 virtual env
python>=3.10
conda create -n dbgpt_env python=3.10
conda activate dbgpt_env
# it will take some minutes
pip install -e ".[default]"
```
Before use DB-GPT Knowledge
```bash
python -m spacy download zh_core_web_sm
```
Once the environment is installed, we have to create a new folder "models" in the DB-GPT project, and then we can put all the models downloaded from huggingface in this directory
@ -78,26 +74,34 @@ centos:yum install git-lfs
ubuntu:apt-get install git-lfs
macos:brew install git-lfs
```
##### Download LLM Model and Embedding Model
If you use OpenAI llm service, see [LLM Use FAQ](https://db-gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)
```{tip}
If you use openai or Axzure or tongyi llm api service, you don't need to download llm model.
```
```bash
cd DB-GPT
mkdir models and cd models
#### llm model
git clone https://huggingface.co/lmsys/vicuna-13b-v1.5
or
git clone https://huggingface.co/THUDM/chatglm2-6b
#### embedding model
git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese
or
git clone https://huggingface.co/moka-ai/m3e-large
#### llm model, if you use openai or Azure or tongyi llm api service, you don't need to download llm model
git clone https://huggingface.co/lmsys/vicuna-13b-v1.5
or
git clone https://huggingface.co/THUDM/chatglm2-6b
```
The model files are large and will take a long time to download. During the download, let's configure the .env file, which needs to be copied and created from the .env.template
if you want to use openai llm service, see [LLM Use FAQ](https://db-gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)
```{tip}
cp .env.template .env
```
@ -108,7 +112,7 @@ You can configure basic parameters in the .env file, for example setting LLM_MOD
### 3. Run
**(Optional) load examples into SQLlite**
**(Optional) load examples into SQLite**
```bash
bash ./scripts/examples/load_examples.sh
```
@ -118,7 +122,7 @@ On windows platform:
.\scripts\examples\load_examples.bat
```
1.Run db-gpt server
Run db-gpt server
```bash
python pilot/server/dbgpt_server.py
@ -126,19 +130,6 @@ python pilot/server/dbgpt_server.py
Open http://localhost:5000 with your browser to see the product.
```{tip}
If you want to access an external LLM service, you need to
1.set the variables LLM_MODEL=YOUR_MODEL_NAME, MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env file.
2.execute dbgpt_server.py in light mode
```
If you want to learn about dbgpt-webui, read https://github./csunny/DB-GPT/tree/new-page-framework/datacenter
```bash
python pilot/server/dbgpt_server.py --light
```
### Multiple GPUs

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: DB-GPT 👏👏 0.3.5\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-25 20:58+0800\n"
"POT-Creation-Date: 2023-10-20 22:29+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
@ -19,33 +19,34 @@ msgstr ""
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../getting_started/faq/llm/llm_faq.md:1 0d4fc79dbfce4f968ab310de12d69f3b
#: ../../getting_started/faq/llm/llm_faq.md:1 54763acec7da4deb90669195c54ec3a1
msgid "LLM USE FAQ"
msgstr "LLM模型使用FAQ"
#: ../../getting_started/faq/llm/llm_faq.md:3 08873df3ef2741dca8916c4c0d503b4f
#: ../../getting_started/faq/llm/llm_faq.md:3 66f73fd2ee7b462e92d3f263792a5e33
msgid "Q1:how to use openai chatgpt service"
msgstr "我怎么使用OPENAI服务"
#: ../../getting_started/faq/llm/llm_faq.md:4 7741b098acd347659ccf663b5323666c
msgid "change your LLM_MODEL"
#: ../../getting_started/faq/llm/llm_faq.md:4 9d178d8462b74cb188bbacf2ac2ac12b
#, fuzzy
msgid "change your LLM_MODEL in `.env`"
msgstr "通过在.env文件设置LLM_MODEL"
#: ../../getting_started/faq/llm/llm_faq.md:9 018115ec074c48739b730310a8bafa44
#: ../../getting_started/faq/llm/llm_faq.md:9 f7ca82f257be4ac09639a7f8af5e83eb
msgid "set your OPENAPI KEY"
msgstr "set your OPENAPI KEY"
#: ../../getting_started/faq/llm/llm_faq.md:16 42408d9c11994a848da41c3ab87d7a78
#: ../../getting_started/faq/llm/llm_faq.md:16 d6255b20dce34a2690df7e2af3505d97
msgid "make sure your openapi API_KEY is available"
msgstr "确认openapi API_KEY是否可用"
#: ../../getting_started/faq/llm/llm_faq.md:18 d9aedc07578d4562bad0ba1f130651de
#: ../../getting_started/faq/llm/llm_faq.md:18 6f1c6dbdb31f4210a6d21f0f3a6ae589
msgid ""
"Q2 What difference between `python dbgpt_server --light` and `python "
"dbgpt_server`"
msgstr "Q2 `python dbgpt_server --light` 和 `python dbgpt_server`的区别是什么?"
#: ../../getting_started/faq/llm/llm_faq.md:21 03c03fedaa2f4bfdaefb42fd4164c902
#: ../../getting_started/faq/llm/llm_faq.md:20 b839771ae9e34e998b0edf8d69deabdd
msgid ""
"`python dbgpt_server --light` dbgpt_server does not start the llm "
"service. Users can deploy the llm service separately by using `python "
@ -57,54 +58,75 @@ msgstr ""
"用户可以通过`python "
"llmserver`单独部署模型服务dbgpt_server通过LLM_SERVER环境变量来访问模型服务。目的是为了可以将dbgpt后台服务和大模型服务分离部署。"
#: ../../getting_started/faq/llm/llm_faq.md:23 61354a0859284346adc3e07c820aa61a
#: ../../getting_started/faq/llm/llm_faq.md:22 aba39cef6fe84799bcd03e8f36c41296
msgid ""
"`python dbgpt_server` dbgpt_server service and the llm service are "
"deployed on the same instance. when dbgpt_server starts the service, it "
"also starts the llm service at the same time."
msgstr "`python dbgpt_server` 是将后台服务和模型服务部署在同一台实例上.dbgpt_server在启动服务的时候同时开启模型服务."
#: ../../getting_started/faq/llm/llm_faq.md:27 41ee95bf0b224be995f7530d0b67f712
#: ../../getting_started/faq/llm/llm_faq.md:27 c65270d479af49e28e99b35a7932adbd
msgid ""
"If you want to access an external LLM service(deployed by DB-GPT), you "
"need to"
msgstr "如果模型服务部署(通过DB-GPT部署)在别的机器想通过dbgpt服务访问模型服务"
#: ../../getting_started/faq/llm/llm_faq.md:29 da153e6d18c543f28e0c4e85618e3d3d
msgid ""
"1.set the variables LLM_MODEL=YOUR_MODEL_NAME, "
"MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env "
"file."
msgstr ""
#: ../../getting_started/faq/llm/llm_faq.md:31 cd89b8a2075f4407b8036a74151a6377
msgid "2.execute dbgpt_server.py in light mode"
msgstr "2.execute dbgpt_server.py light 模式"
#: ../../getting_started/faq/llm/llm_faq.md:33 8f4b9401ac4f4a25a7479bee9ef5e8c1
msgid "python pilot/server/dbgpt_server.py --light"
msgstr ""
#: ../../getting_started/faq/llm/llm_faq.md:38 69e1064cd7554ce6b49da732f800eacc
#, fuzzy
msgid "Q3 how to use MultiGPUs"
msgid "Q3 How to use MultiGPUs"
msgstr "Q2 怎么使用 MultiGPUs"
#: ../../getting_started/faq/llm/llm_faq.md:29 7fce22f0327646399b98b0e20574a2fd
#: ../../getting_started/faq/llm/llm_faq.md:40 6de3f105ce96430db5756f38bbd9ca12
msgid ""
"DB-GPT will use all available gpu by default. And you can modify the "
"setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu"
" IDs."
msgstr "DB-GPT默认加载可利用的gpu你也可以通过修改 在`.env`文件 `CUDA_VISIBLE_DEVICES=0,1`来指定gpu IDs"
#: ../../getting_started/faq/llm/llm_faq.md:32 3f4eb824dc924d7ca309dc5057f8360a
#: ../../getting_started/faq/llm/llm_faq.md:43 87cb9bfb20af4b259d719df797c42a7d
msgid ""
"Optionally, you can also specify the gpu ID to use before the starting "
"command, as shown below:"
msgstr "你也可以指定gpu ID启动"
#: ../../getting_started/faq/llm/llm_faq.md:42 a77d72f91b864d0aac344b317c100950
#: ../../getting_started/faq/llm/llm_faq.md:53 bcfa35cda6304ee5ab9a775a2d4eda63
msgid ""
"You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to "
"configure the maximum memory used by each GPU."
msgstr "同时你可以通过在.env文件设置`MAX_GPU_MEMORY=xxGib`修改每个GPU的最大使用内存"
#: ../../getting_started/faq/llm/llm_faq.md:44 b3bb92777a1244d5967a4308d14722fc
#: ../../getting_started/faq/llm/llm_faq.md:55 a05c5484927844c8bb4791f0a9ccc82e
#, fuzzy
msgid "Q4 Not Enough Memory"
msgstr "Q3 机器显存不够 "
#: ../../getting_started/faq/llm/llm_faq.md:46 c3976d81aafa4c6081e37c0d0a115d96
#: ../../getting_started/faq/llm/llm_faq.md:57 fe17a023b6eb4a92b1b927e1b94e3784
msgid "DB-GPT supported 8-bit quantization and 4-bit quantization."
msgstr "DB-GPT 支持 8-bit quantization 和 4-bit quantization."
#: ../../getting_started/faq/llm/llm_faq.md:48 93ade142f949449d8f54c0b6d8c8d261
#: ../../getting_started/faq/llm/llm_faq.md:59 76c3684c10864b8e87e5c2255b6c0b7f
msgid ""
"You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` "
"in `.env` file to use quantization(8-bit quantization is enabled by "
"default)."
msgstr "你可以通过在.env文件设置`QUANTIZE_8bit=True` or `QUANTIZE_4bit=True`"
#: ../../getting_started/faq/llm/llm_faq.md:50 be2573907d624ebf8c901301f938577b
#: ../../getting_started/faq/llm/llm_faq.md:61 c5d849a38f1a4f0687bbcffb6699dc39
msgid ""
"Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit"
" quantization can run with 48 GB of VRAM."
@ -112,45 +134,45 @@ msgstr ""
"Llama-2-70b with 8-bit quantization 可以运行在 80 GB VRAM机器 4-bit "
"quantization可以运行在 48 GB VRAM"
#: ../../getting_started/faq/llm/llm_faq.md:52 c084d4624e794f7e8ceebadb6f260b49
#: ../../getting_started/faq/llm/llm_faq.md:63 867329a5e3b0403083e96f72b8747fb2
msgid ""
"Note: you need to install the latest dependencies according to "
"[requirements.txt](https://github.com/eosphoros-ai/DB-"
"GPT/blob/main/requirements.txt)."
msgstr ""
#: ../../getting_started/faq/llm/llm_faq.md:54 559bcd62af7340f79f5eca817187e13e
#: ../../getting_started/faq/llm/llm_faq.md:65 60ceee25e9fb4ddba40c5306bfb0a82f
#, fuzzy
msgid "Q5 How to Add LLM Service dynamic local mode"
msgstr "Q5 怎样动态新增模型服务"
#: ../../getting_started/faq/llm/llm_faq.md:56 e47101d7d47e486e8572f6acd609fa92
#: ../../getting_started/faq/llm/llm_faq.md:67 c99eb7f7ae844884a8f0da94238ea7e0
msgid ""
"Now DB-GPT through multi-llm service switch, so how to add llm service "
"dynamic,"
msgstr "DB-GPT支持多个模型服务切换, 怎样添加一个模型服务呢"
#: ../../getting_started/faq/llm/llm_faq.md:67 5710dd9bf8f54bd388354079b29acdd2
#: ../../getting_started/faq/llm/llm_faq.md:78 cd89b8a2075f4407b8036a74151a6377
#, fuzzy
msgid "Q6 How to Add LLM Service dynamic in remote mode"
msgstr "Q5 怎样动态新增模型服务"
#: ../../getting_started/faq/llm/llm_faq.md:68 9c9311d6daad402a8e0748f00e69e8cf
#: ../../getting_started/faq/llm/llm_faq.md:79 8833ce89465848259b08ef0a4fa68d96
msgid ""
"If you deploy llm service in remote machine instance, and you want to "
"add model service to dbgpt server to manage"
msgstr "如果你想在远程机器实例部署大模型服务并添加到本地dbgpt_server进行管理"
#: ../../getting_started/faq/llm/llm_faq.md:70 3ec1565e74384beab23df9d8d4a19a39
#: ../../getting_started/faq/llm/llm_faq.md:81 992eb37e3cca48829636c15ba3ec2ee8
msgid "use dbgpt start worker and set --controller_addr."
msgstr "使用1`dbgpt start worker`命令并设置注册地址--controller_addr"
#: ../../getting_started/faq/llm/llm_faq.md:80 e2b8a9119f7843beb787d021c973eea4
#: ../../getting_started/faq/llm/llm_faq.md:91 0d06d7d6dd3d4780894ecd914c89b5a2
#, fuzzy
msgid "Q7 dbgpt command not found"
msgstr "Q6 dbgpt command not found"
#: ../../getting_started/faq/llm/llm_faq.md:86 257ae9c462cd4a9abe7d2ff00f6bc891
#: ../../getting_started/faq/llm/llm_faq.md:97 5d9beed0d95a4503a43d0e025664273b
msgid ""
"Q8 When starting the worker_manager on a cloud server and registering it "
"with the controller, it is noticed that the worker's exposed IP is a "

View File

@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: DB-GPT 👏👏 0.3.5\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-10-17 14:35+0800\n"
"POT-Creation-Date: 2023-10-20 22:29+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
@ -20,47 +20,47 @@ msgstr ""
"Generated-By: Babel 2.12.1\n"
#: ../../getting_started/install/deploy/deploy.md:1
#: 73f932b662564edba45fbd711fd19005
#: 7bcf028ff0884ea88f25b7e2c9608153
msgid "Installation From Source"
msgstr "源码安装"
#: ../../getting_started/install/deploy/deploy.md:3
#: 70b623827a26447cb9382f1cb568b93c
#: 61f0b1135c84423bbaeb5f9f0942ad7d
msgid ""
"This tutorial gives you a quick walkthrough about use DB-GPT with you "
"environment and data."
msgstr "本教程为您提供了关于如何使用DB-GPT的使用指南。"
#: ../../getting_started/install/deploy/deploy.md:5
#: 6102ada4b19a4062947ad0ee5305dad5
#: d7622cd5f69f4a32b3c8e979c6b9f601
msgid "Installation"
msgstr "安装"
#: ../../getting_started/install/deploy/deploy.md:7
#: 7c006c0c72944049bba43fd95daf1bd1
#: 4368072b6384496ebeaff3c09ca2f888
msgid "To get started, install DB-GPT with the following steps."
msgstr "请按照以下步骤安装DB-GPT"
#: ../../getting_started/install/deploy/deploy.md:9
#: eac8c7f921a042b79b4d0032c01b095a
#: 0dfdf8ac6e314fe7b624a685d9beebd5
msgid "1. Hardware Requirements"
msgstr "1. 硬件要求"
#: ../../getting_started/install/deploy/deploy.md:10
#: 8c430e2db5ce41e8b9d22e6e13c62cb3
#: cff920f8732f4f1da3063ec2bc099271
msgid ""
"DB-GPT can be deployed on servers with low hardware requirements or on "
"servers with high hardware requirements."
msgstr "DB-GPT可以部署在对硬件要求不高的服务器也可以部署在对硬件要求高的服务器"
#: ../../getting_started/install/deploy/deploy.md:12
#: a6b042509e1149fa8213a014e42eaaae
#: 8e3818824d6146c6b265731c277fbd0b
#, fuzzy
msgid "Low hardware requirements"
msgstr "1. 硬件要求"
#: ../../getting_started/install/deploy/deploy.md:13
#: 577c8c4edc2e4f45963b2a668385852f
#: ca95d66526994173ac1fea20bdea5d67
msgid ""
"The low hardware requirements mode is suitable for integrating with "
"third-party LLM services' APIs, such as OpenAI, Tongyi, Wenxin, or "
@ -68,23 +68,23 @@ msgid ""
msgstr "Low hardware requirements模式适用于对接第三方模型服务的api,比如OpenAI, 通义千问, 文心.cpp。"
#: ../../getting_started/install/deploy/deploy.md:15
#: 384475d3a87043eb9eebc384052ac9cc
#: 83fc53cc1b4248139f69f490b859ad8d
msgid "DB-GPT provides set proxy api to support LLM api."
msgstr "DB-GPT可以通过设置proxy api来支持第三方大模型服务"
#: ../../getting_started/install/deploy/deploy.md:17
#: e5bd8a999adb4e07b8b5221f1893251d
#: 418a9f24eafc4571b74d86c3f1e57a2d
msgid "As our project has the ability to achieve ChatGPT performance of over 85%,"
msgstr "由于我们的项目有能力达到85%以上的ChatGPT性能"
#: ../../getting_started/install/deploy/deploy.md:19
#: 6a97ed5893414e17bb9c1f8bb21bc965
#: 6f85149ab0024cc99e43804206a595ed
#, fuzzy
msgid "High hardware requirements"
msgstr "1. 硬件要求"
#: ../../getting_started/install/deploy/deploy.md:20
#: d0c248939b4143a2b01afd051b02ec12
#: 31635ffff5084814a14deb3220dd2c17
#, fuzzy
msgid ""
"The high hardware requirements mode is suitable for independently "
@ -93,70 +93,72 @@ msgid ""
"requirements. However, overall, the project can be deployed and used on "
"consumer-grade graphics cards. The specific hardware requirements for "
"deployment are as follows:"
msgstr "High hardware requirements模式适用于需要独立部署私有大模型服务比如Llama系列模型Baichuan, chatglmvicuna等私有大模型所以对硬件有一定的要求。但总体来说我们在消费级的显卡上即可完成项目的部署使用具体部署的硬件说明如下:"
msgstr ""
"High hardware requirements模式适用于需要独立部署私有大模型服务比如Llama系列模型Baichuan, "
"chatglmvicuna等私有大模型所以对硬件有一定的要求。但总体来说我们在消费级的显卡上即可完成项目的部署使用具体部署的硬件说明如下:"
#: ../../getting_started/install/deploy/deploy.md
#: 2ee432394f6b4d9cb0a424f4b99bf3be
#: d806b90be1614ad3b2e06c92f4b17e5c
msgid "GPU"
msgstr "GPU"
#: ../../getting_started/install/deploy/deploy.md
#: 4cd716486f994080880f84853b047a5d
#: 4b02f41145484389ace0b547384ac269 bbba2ff3fab94482a1761264264deef9
msgid "VRAM Size"
msgstr "显存"
#: ../../getting_started/install/deploy/deploy.md
#: d1b33d0348894bfc8a843a3d38c6daaa
#: 0ea63c2dcc0e43858a61e01d59ad09f9
msgid "Performance"
msgstr "Performance"
#: ../../getting_started/install/deploy/deploy.md
#: d5850bbe7d0a430d993b7e6bd1f24bff
#: 6521683eb91e450c928a72688550a63d
msgid "RTX 4090"
msgstr "RTX 4090"
#: ../../getting_started/install/deploy/deploy.md
#: c7d15be08ac74624bbfb5eb4554fc7ff
#: bb6340c9cdc048fbb0ed55defc1aaeb6 d991b39845ee404198e1a1e35cc416f3
msgid "24 GB"
msgstr "24 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 219dff2fee83460da55d9d628569365e
#: 4134d3a89d364e33b2bdf1c7667e4755
msgid "Smooth conversation inference"
msgstr "丝滑的对话体验"
#: ../../getting_started/install/deploy/deploy.md
#: 56025c5f37984963943de7accea85850
#: 096ff425ac7646a990a7133961c6e6af
msgid "RTX 3090"
msgstr "RTX 3090"
#: ../../getting_started/install/deploy/deploy.md
#: 8a0b8a0afa0c4cc39eb7c2271775cf60
#: ecf670cdbec3493f804e6a785a83c608
msgid "Smooth conversation inference, better than V100"
msgstr "丝滑的对话体验性能好于V100"
#: ../../getting_started/install/deploy/deploy.md
#: 2fc5e6ac8a6b4c508944c659adffa0c1
#: 837b14e0a3d243bda0df7ab35b70b7e7
msgid "V100"
msgstr "V100"
#: ../../getting_started/install/deploy/deploy.md
#: f92a1393539a49db983b06f7276f446b
#: 3b20a087c8e342c89ccb807ffc3817c2 b8b6b45253084436a5893896b35a2bd5
msgid "16 GB"
msgstr "16 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 4e7de52a58d24a0bb10e45e1435128a6
#: 772e18bb0ace4f7ea68b51bfc05816ce 9351389a1fac479cbe67b1f8c2c37de5
msgid "Conversation inference possible, noticeable stutter"
msgstr "Conversation inference possible, noticeable stutter"
#: ../../getting_started/install/deploy/deploy.md
#: 217fe55f590a497ba6622698945e7be8
#: aadb62bf48bb49d99a714bcdf3092260
msgid "T4"
msgstr "T4"
#: ../../getting_started/install/deploy/deploy.md:30
#: 30ca67fe27f64df093a2d281e1288c5c
#: 4de80d9fcf34470bae806d829836b7d7
#, fuzzy
msgid ""
"If your VRAM Size is not enough, DB-GPT supported 8-bit quantization and "
@ -164,105 +166,109 @@ msgid ""
msgstr "如果你的显存不够DB-GPT支持8-bit和4-bit量化版本"
#: ../../getting_started/install/deploy/deploy.md:32
#: fc0c3a0730d64e9e98d1b25f4dd5db34
#: 00d81cbf48b549f3b9128d3840d01b2e
msgid ""
"Here are some of the VRAM size usage of the models we tested in some "
"common scenarios."
msgstr "这里是量化版本的相关说明"
#: ../../getting_started/install/deploy/deploy.md
#: 1f1f6c10209b446f99d520fdb68e0f5d
#: dc346f2bca794bb7ae34b330e82ccbcf
msgid "Model"
msgstr "Model"
#: ../../getting_started/install/deploy/deploy.md
#: 18e3240d407e41f88028b24aeced1bf4
#: 8de6cd40de78460ba774650466f8df26
msgid "Quantize"
msgstr "Quantize"
#: ../../getting_started/install/deploy/deploy.md
#: 03aa79d3c3f54e3c834180b0d1ed9a5c
#: 3e412b8f4852482ab07a0f546e37ae7f f30054e0558b41a192cc9a2462b299ec
msgid "vicuna-7b-v1.5"
msgstr "vicuna-7b-v1.5"
#: ../../getting_started/install/deploy/deploy.md
#: 09419ad0a88c4179979505ef71204fd6 1b4ab0186184493d895eeec12d078c52
#: 6acec7b76e604343885aa71d92b04d1e 9b73ca1c18d14972b894db69438e3fb2
#: b869995505ae4895b9f13e271470e5cb c9eaf983eeb2486da08e628728ae301f
#: ff0a86dc63ce4cd580f354d15d333501
#: 14358fa40cf94614acf39a803987631f 2a3f52b26b444783be04ffa795246a03
#: 3956734b19aa44c3be08d56348b47a38 751034ca7d00447895fda1d9b8a7364f
#: a66d16e5424a42a3a1309dfb8ffc33f9 b8ebce0a9e7e481da5f16214f955665d
#: f533b3f37e6f4594aec5e0f59f241683
msgid "4-bit"
msgstr "4-bit"
#: ../../getting_started/install/deploy/deploy.md
#: d0d959f022f44bbeb34d67ccf49ba3bd
#: 9eac7e866ebe45169c64a952c363ce43 aa56722db3014abd9022067ed5fc4f98
#: af4df898fb47471fbb487fcf6e2d40d6
msgid "8 GB"
msgstr "8 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 01cb7be0064940e8a637df7ed8e15310 13568d8a793b4c2db655f89dc690929a
#: 28ce31711f91455b9b910276fa059c65 2dddf2e87a70452fb27a627d62464346
#: 3f3f4dc00acb43258dce311f144e0fd7 5aa76fd2fb35474e8d06795e7369ceb4
#: d660be499efc4b6ca61da0d5af758620
#: 211aaf2e234d46108b5eee5006d5f4bb 40214b2f71ce452db3501ea9d81a0c8a
#: 72fcd5e0634e48d79813f1037e6acb45 7756b67568cc40c4b73079b26e79c85d
#: 8c21f8e90154407682c093a46b93939d ad937c14bbcd41ac92a3dbbdb8339eed
#: d1e7ee217dd64b15b934456c3a72c450
msgid "8-bit"
msgstr "8-bit"
#: ../../getting_started/install/deploy/deploy.md
#: 3b963a1ce6934229ba7658cb407b6a52
#: 4812504dfb9a4b25a5db773d9a08f34f 76ae2407ba4e4013953b9f243d9a5d92
#: 927054919de047fd8a83df67e1400622 9773e73eb89847f8a85a2dc55b562916
#: ce33d0c3792f43398fc7e2694653d8fc d3dc0d4cceb24d2b9dc5c7120fbed94e
msgid "12 GB"
msgstr "12 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 30d28dcaa64545198aaa20fe4562bb6d
#: 83e6d6ba1aa74946858f0162424752ab b6b99caeaeff44c488e3e819ed337074
msgid "vicuna-13b-v1.5"
msgstr "vicuna-13b-v1.5"
#: ../../getting_started/install/deploy/deploy.md
#: 28de25a1952049d2b7aff41020e428ff
#: 492c5f0d560946fe879f6c339975ba37 970063dda21e4dd8be6f89a3c87832a5
#: a66bad6054b24dd99b370312bc8b6fa6
msgid "20 GB"
msgstr "20 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 535974c886b14c618ca84de1fe63d5e4
#: a75f3405085441d8920db49f159588d2 cf635931c55846aea4cbccd92e4f0377
msgid "llama-2-7b"
msgstr "llama-2-7b"
#: ../../getting_started/install/deploy/deploy.md
#: cc04760a8b9e4a79a7dada9a11abda2c
#: 61d632df8c5149b393d03ac802141125 bc98c895d457495ea26e3537de83b432
msgid "llama-2-13b"
msgstr "llama-2-13b"
#: ../../getting_started/install/deploy/deploy.md
#: 9e83d8d5ae44411dba4cc6c2d796b20f
#: 3ccb1f6d8a924aeeacb5373edc168103 9ecce68e159a4649a8d5e69157af17a1
msgid "llama-2-70b"
msgstr "llama-2-70b"
#: ../../getting_started/install/deploy/deploy.md
#: cb6ce389adfc463a9c851eb1e4abfcff
#: ca1da6ce08674b3daa0ab9ee0330203f
msgid "48 GB"
msgstr "48 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 906d664156084223a4efa0ae9804bd33
#: 34d4d20e57c1410fbdcabd09a5968cdd
msgid "80 GB"
msgstr "80 GB"
#: ../../getting_started/install/deploy/deploy.md
#: 957fb0c6f3114a63ba33a1cfb31060e3
#: 4ec2213171054c96ac9cd46e259ce7bf 68a1752f76a54287a73e82724723ea75
msgid "baichuan-7b"
msgstr "baichuan-7b"
#: ../../getting_started/install/deploy/deploy.md
#: 5f3bc4cf57d946cfb38a941250685151
#: 103b020a575744ad964c60a367aa1651 c659a720a1024869b09d7cc161bcd8a2
msgid "baichuan-13b"
msgstr "baichuan-13b"
#: ../../getting_started/install/deploy/deploy.md:51
#: 87ae8c58df314b69ae119aa831cb7dd5
#: 2259a008d0e14f9e8d1e1d9234b97298
msgid "2. Install"
msgstr "2. Install"
#: ../../getting_started/install/deploy/deploy.md:56
#: 79cdebf089614761bf4299a9ce601b81
#: 875c7d8e32574552a48199577c78ccdd
msgid ""
"We use Sqlite as default database, so there is no need for database "
"installation. If you choose to connect to other databases, you can "
@ -276,70 +282,78 @@ msgstr ""
"GPT快速部署不需要部署相关数据库服务。如果你想使用其他数据库需要先部署相关数据库服务。我们目前使用Miniconda进行python环境和包依赖管理[安装"
" Miniconda](https://docs.conda.io/en/latest/miniconda.html)"
#: ../../getting_started/install/deploy/deploy.md:65
#: 03ff2f444721454588095bb348220276
msgid "Before use DB-GPT Knowledge"
msgstr "在使用知识库之前"
#: ../../getting_started/install/deploy/deploy.md:71
#: b6faa4d078a046d6a7c0313e8deef0f3
#: ../../getting_started/install/deploy/deploy.md:67
#: c03e3290e1144320a138d015171ac596
msgid ""
"Once the environment is installed, we have to create a new folder "
"\"models\" in the DB-GPT project, and then we can put all the models "
"downloaded from huggingface in this directory"
msgstr "如果你已经安装好了环境需要创建models, 然后到huggingface官网下载模型"
#: ../../getting_started/install/deploy/deploy.md:74
#: f43fd2b74d994bf6bb4016e88c43d51a
#: ../../getting_started/install/deploy/deploy.md:70
#: 933401ac909741ada4acf6bcd4142ed6
msgid "Notice make sure you have install git-lfs"
msgstr ""
msgstr "注意确认你已经安装了git-lfs"
#: ../../getting_started/install/deploy/deploy.md:76
#: f558a7ee728a4344af576aa375b43092
#: ../../getting_started/install/deploy/deploy.md:72
#: e8e4886a83dd402c85fe3fa989322991
msgid "centos:yum install git-lfs"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:78
#: bab08604a3ba45b9b827ff5a4b931601
#: ../../getting_started/install/deploy/deploy.md:74
#: 5ead7e98bddf4fa4845c3d3955f18054
msgid "ubuntu:apt-get install git-lfs"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:80
#: b4a107e5f8524acc9aed74318880f9f3
#: ../../getting_started/install/deploy/deploy.md:76
#: 08acfaaaa2544182a59df54cdf61cd84
msgid "macos:brew install git-lfs"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:97
#: ecb5fa1f18154685bb4336d04ac3a386
#: ../../getting_started/install/deploy/deploy.md:78
#: 312ad44170c34531865576067c58701a
msgid "Download LLM Model and Embedding Model"
msgstr "下载LLM模型和Embedding模型"
#: ../../getting_started/install/deploy/deploy.md:80
#: de54793643434528a417011d2919b2c4
#, fuzzy
msgid ""
"If you use OpenAI llm service, see [LLM Use FAQ](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
msgstr ""
"如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
#: ../../getting_started/install/deploy/deploy.md:83
#: 50ec1eb7c56a46ac8fbf911c7adc9b0e
msgid ""
"If you use openai or Azure or tongyi llm api service, you don't need to "
"download llm model."
msgstr "如果你想通过openai or Azure or tongyi第三方api访问模型服务你可以不用下载llm模型"
#: ../../getting_started/install/deploy/deploy.md:103
#: 03950b2a480149388fb7b88f7d251ef5
msgid ""
"The model files are large and will take a long time to download. During "
"the download, let's configure the .env file, which needs to be copied and"
" created from the .env.template"
msgstr "模型文件很大,需要很长时间才能下载。在下载过程中,让我们配置.env文件它需要从。env.template中复制和创建。"
#: ../../getting_started/install/deploy/deploy.md:99
#: 0f08b0ecbea14cbdba29ea8d87cf24b4
msgid ""
"if you want to use openai llm service, see [LLM Use FAQ](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
msgstr ""
"如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-"
"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)"
#: ../../getting_started/install/deploy/deploy.md:102
#: 6efb9a45ab2c45c7b4770f987b639c52
#: ../../getting_started/install/deploy/deploy.md:106
#: 441c4333216a402a84fd52f8e56fc81b
msgid "cp .env.template .env"
msgstr "cp .env.template .env"
#: ../../getting_started/install/deploy/deploy.md:105
#: b9d2b81a2cf440c3b49a5c06759eb2ba
#: ../../getting_started/install/deploy/deploy.md:109
#: 4eac3d98df6a4e788234ff0ec1ffd03e
msgid ""
"You can configure basic parameters in the .env file, for example setting "
"LLM_MODEL to the model to be used"
msgstr "您可以在.env文件中配置基本参数例如将LLM_MODEL设置为要使用的模型。"
#: ../../getting_started/install/deploy/deploy.md:107
#: 2f6afa40ca994115b16ba28baaf65bde
#: ../../getting_started/install/deploy/deploy.md:111
#: a36bd6d6236b4c74b161a935ae792b91
msgid ""
"([Vicuna-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) based on "
"llama-2 has been released, we recommend you set `LLM_MODEL=vicuna-"
@ -349,107 +363,81 @@ msgstr ""
"/vicuna-13b-v1.5) "
"目前Vicuna-v1.5模型(基于llama2)已经开源了我们推荐你使用这个模型通过设置LLM_MODEL=vicuna-13b-v1.5"
#: ../../getting_started/install/deploy/deploy.md:109
#: 7c5883f9594646198f464e6dafb2f0ff
#: ../../getting_started/install/deploy/deploy.md:113
#: 78334cbf0c364eb3bc41a2a6c55ebb0d
msgid "3. Run"
msgstr "3. Run"
#: ../../getting_started/install/deploy/deploy.md:111
#: 0e3719a238eb4332b7c15efa3f16e3e2
msgid "**(Optional) load examples into SQLlite**"
#: ../../getting_started/install/deploy/deploy.md:115
#: 6d5ad6eb067d4e9fa1c574b7b706233f
msgid "**(Optional) load examples into SQLite**"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:116
#: c901055131ce4688b1c602393913b675
#: ../../getting_started/install/deploy/deploy.md:120
#: 07219a4ed3c44e349314ae04ebdf58e1
msgid "On windows platform:"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:121
#: 777a50f9167c4b8f9c2a96682ccc4c4a
msgid "1.Run db-gpt server"
#: ../../getting_started/install/deploy/deploy.md:125
#: 819be2bb22044440ae00c2e7687ea249
#, fuzzy
msgid "Run db-gpt server"
msgstr "1.Run db-gpt server"
#: ../../getting_started/install/deploy/deploy.md:127
#: 62aafb652df8478281ab633d8d082e7f
#: ../../getting_started/install/deploy/deploy.md:131
#: 5ba6d7c9bf9146c797036ab4b9b4f59e
msgid "Open http://localhost:5000 with your browser to see the product."
msgstr "打开浏览器访问http://localhost:5000"
#: ../../getting_started/install/deploy/deploy.md:130
#: cff18fc20ffd4716bc7cf377730dd5ec
msgid "If you want to access an external LLM service, you need to"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:132
#: f27c3aa9e627480a96cd04fcd4bfdaec
msgid ""
"1.set the variables LLM_MODEL=YOUR_MODEL_NAME, "
"MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in the .env "
"file."
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:134
#: e05a395f67924514929cd025fab67e44
msgid "2.execute dbgpt_server.py in light mode"
msgstr ""
#: ../../getting_started/install/deploy/deploy.md:137
#: a5d7fcb46ba446bf9913646b28b036ed
msgid ""
"If you want to learn about dbgpt-webui, read https://github./csunny/DB-"
"GPT/tree/new-page-framework/datacenter"
msgstr ""
"如果你想了解web-ui, 请访问https://github./csunny/DB-GPT/tree/new-page-"
"framework/datacenter"
#: ../../getting_started/install/deploy/deploy.md:143
#: 90c614e7744c4a7f843adb8968b58c78
#: be3a2729ef3b4742a403017b31bda7e3
#, fuzzy
msgid "Multiple GPUs"
msgstr "4. Multiple GPUs"
#: ../../getting_started/install/deploy/deploy.md:145
#: 7b72e7cbd9d246299de5986772df4825
#: ../../getting_started/install/deploy/deploy.md:136
#: 00ffa1cc145e4afa830c592a629246f9
msgid ""
"DB-GPT will use all available gpu by default. And you can modify the "
"setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu"
" IDs."
msgstr "DB-GPT默认加载可利用的gpu你也可以通过修改 在`.env`文件 `CUDA_VISIBLE_DEVICES=0,1`来指定gpu IDs"
#: ../../getting_started/install/deploy/deploy.md:147
#: b7e2f7bbf625464489b3fd9aedb0ed59
#: ../../getting_started/install/deploy/deploy.md:138
#: bde32a5a8fea4350868be579e9ee6baa
msgid ""
"Optionally, you can also specify the gpu ID to use before the starting "
"command, as shown below:"
msgstr "你也可以指定gpu ID启动"
#: ../../getting_started/install/deploy/deploy.md:157
#: 69fd2183a143428fb77949f58381d455
#: ../../getting_started/install/deploy/deploy.md:148
#: 791ed2db2cff44c48342a7828cbd4c45
msgid ""
"You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to "
"configure the maximum memory used by each GPU."
msgstr "同时你可以通过在.env文件设置`MAX_GPU_MEMORY=xxGib`修改每个GPU的最大使用内存"
#: ../../getting_started/install/deploy/deploy.md:159
#: 6cd03b9728f943a4a632aa9b061931f0
#: ../../getting_started/install/deploy/deploy.md:150
#: f86b37c8943e4f5595610706e75b4add
#, fuzzy
msgid "Not Enough Memory"
msgstr "5. Not Enough Memory"
#: ../../getting_started/install/deploy/deploy.md:161
#: 4837aba4c80b42819c1a6345de0aa820
#: ../../getting_started/install/deploy/deploy.md:152
#: 8a7bd02cbeca497aa8eecaaf1910a6ad
msgid "DB-GPT supported 8-bit quantization and 4-bit quantization."
msgstr "DB-GPT 支持 8-bit quantization 和 4-bit quantization."
#: ../../getting_started/install/deploy/deploy.md:163
#: c1a701e9bc4c4439adfb930d0e953cec
#: ../../getting_started/install/deploy/deploy.md:154
#: 5ad49b99fe774ba79c50de0cd694807c
msgid ""
"You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` "
"in `.env` file to use quantization(8-bit quantization is enabled by "
"default)."
msgstr "你可以通过在.env文件设置`QUANTIZE_8bit=True` or `QUANTIZE_4bit=True`"
#: ../../getting_started/install/deploy/deploy.md:165
#: 205c101f1f774130a5853dd9b7373d36
#: ../../getting_started/install/deploy/deploy.md:156
#: b9c80e92137447da91eb944443144c69
msgid ""
"Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit"
" quantization can run with 48 GB of VRAM."
@ -508,3 +496,29 @@ msgstr ""
#~ msgid "ubuntu:app-get install git-lfs"
#~ msgstr ""
#~ msgid "Before use DB-GPT Knowledge"
#~ msgstr "在使用知识库之前"
#~ msgid "**(Optional) load examples into SQLlite**"
#~ msgstr ""
#~ msgid "If you want to access an external LLM service, you need to"
#~ msgstr ""
#~ msgid ""
#~ "1.set the variables LLM_MODEL=YOUR_MODEL_NAME, "
#~ "MODEL_SERVER=YOUR_MODEL_SERVEReg:http://localhost:5000 in "
#~ "the .env file."
#~ msgstr ""
#~ msgid "2.execute dbgpt_server.py in light mode"
#~ msgstr ""
#~ msgid ""
#~ "If you want to learn about "
#~ "dbgpt-webui, read https://github./csunny/DB-"
#~ "GPT/tree/new-page-framework/datacenter"
#~ msgstr ""
#~ "如果你想了解web-ui, 请访问https://github./csunny/DB-GPT/tree"
#~ "/new-page-framework/datacenter"

View File

@ -28,7 +28,11 @@ class WorkerRunData:
def _to_print_key(self):
model_name = self.model_params.model_name
model_type = self.model_params.model_type
model_type = (
self.model_params.model_type
if hasattr(self.model_params, "model_type")
else "text2vec"
)
host = self.host
port = self.port
return f"model {model_name}@{model_type}({host}:{port})"

View File

@ -316,6 +316,7 @@ def core_requires():
"jsonschema",
# TODO move transformers to default
"transformers>=4.31.0",
"alembic==1.12.0",
]
@ -424,7 +425,6 @@ def default_requires():
"dashscope",
"chardet",
"GitPython",
"alembic==1.12.0",
]
setup_spec.extras["default"] += setup_spec.extras["framework"]
setup_spec.extras["default"] += setup_spec.extras["knowledge"]