ci: make ci happy lint the code, delete unused imports

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
This commit is contained in:
yihong0618
2023-05-24 18:42:55 +08:00
parent 562d5a98cc
commit b098a48898
75 changed files with 1110 additions and 824 deletions

View File

@@ -3,14 +3,15 @@
import dataclasses
import torch
from torch import Tensor
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
@dataclasses.dataclass
class CompressionConfig:
"""Group-wise quantization."""
num_bits: int
group_size: int
group_dim: int
@@ -19,7 +20,8 @@ class CompressionConfig:
default_compression_config = CompressionConfig(
num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True)
num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True
)
class CLinear(nn.Module):
@@ -40,8 +42,11 @@ def compress_module(module, target_device):
for attr_str in dir(module):
target_attr = getattr(module, attr_str)
if type(target_attr) == torch.nn.Linear:
setattr(module, attr_str,
CLinear(target_attr.weight, target_attr.bias, target_device))
setattr(
module,
attr_str,
CLinear(target_attr.weight, target_attr.bias, target_device),
)
for name, child in module.named_children():
compress_module(child, target_device)
@@ -52,22 +57,31 @@ def compress(tensor, config):
return tensor
group_size, num_bits, group_dim, symmetric = (
config.group_size, config.num_bits, config.group_dim, config.symmetric)
config.group_size,
config.num_bits,
config.group_dim,
config.symmetric,
)
assert num_bits <= 8
original_shape = tensor.shape
num_groups = (original_shape[group_dim] + group_size - 1) // group_size
new_shape = (original_shape[:group_dim] + (num_groups, group_size) +
original_shape[group_dim+1:])
new_shape = (
original_shape[:group_dim]
+ (num_groups, group_size)
+ original_shape[group_dim + 1 :]
)
# Pad
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
if pad_len != 0:
pad_shape = original_shape[:group_dim] + (pad_len,) + original_shape[group_dim+1:]
tensor = torch.cat([
tensor,
torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)],
dim=group_dim)
pad_shape = (
original_shape[:group_dim] + (pad_len,) + original_shape[group_dim + 1 :]
)
tensor = torch.cat(
[tensor, torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)],
dim=group_dim,
)
data = tensor.view(new_shape)
# Quantize
@@ -78,7 +92,7 @@ def compress(tensor, config):
data = data.clamp_(-B, B).round_().to(torch.int8)
return data, scale, original_shape
else:
B = 2 ** num_bits - 1
B = 2**num_bits - 1
mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0]
mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0]
@@ -96,7 +110,11 @@ def decompress(packed_data, config):
return packed_data
group_size, num_bits, group_dim, symmetric = (
config.group_size, config.num_bits, config.group_dim, config.symmetric)
config.group_size,
config.num_bits,
config.group_dim,
config.symmetric,
)
# Dequantize
if symmetric:
@@ -111,9 +129,10 @@ def decompress(packed_data, config):
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
if pad_len:
padded_original_shape = (
original_shape[:group_dim] +
(original_shape[group_dim] + pad_len,) +
original_shape[group_dim+1:])
original_shape[:group_dim]
+ (original_shape[group_dim] + pad_len,)
+ original_shape[group_dim + 1 :]
)
data = data.reshape(padded_original_shape)
indices = [slice(0, x) for x in original_shape]
return data[indices].contiguous()