diff --git a/docs/getting_started/faq/llm/llm_faq.md b/docs/getting_started/faq/llm/llm_faq.md index 9948bcf4b..7b4409d1f 100644 --- a/docs/getting_started/faq/llm/llm_faq.md +++ b/docs/getting_started/faq/llm/llm_faq.md @@ -1,7 +1,7 @@ LLM USE FAQ ================================== ##### Q1:how to use openai chatgpt service -change your LLM_MODEL +change your LLM_MODEL in `.env` ````shell LLM_MODEL=proxyllm ```` @@ -16,7 +16,6 @@ PROXY_SERVER_URL=https://api.openai.com/v1/chat/completions make sure your openapi API_KEY is available ##### Q2 What difference between `python dbgpt_server --light` and `python dbgpt_server` - ```{note} * `python dbgpt_server --light` dbgpt_server does not start the llm service. Users can deploy the llm service separately by using `python llmserver`, and dbgpt_server accesses the llm service through set the LLM_SERVER environment variable in .env. The purpose is to allow for the separate deployment of dbgpt's backend service and llm service. @@ -24,7 +23,19 @@ make sure your openapi API_KEY is available ``` -##### Q3 how to use MultiGPUs +```{tip} +If you want to access an external LLM service(deployed by DB-GPT), you need to + +1.set the variables LLM_MODEL=YOUR_MODEL_NAME, MODEL_SERVER=YOUR_MODEL_SERVER(eg:http://localhost:5000) in the .env file. + +2.execute dbgpt_server.py in light mode + +python pilot/server/dbgpt_server.py --light + +``` + + +##### Q3 How to use MultiGPUs DB-GPT will use all available gpu by default. And you can modify the setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu IDs. diff --git a/docs/getting_started/install/deploy/deploy.md b/docs/getting_started/install/deploy/deploy.md index b8b91471a..b7ef6e44b 100644 --- a/docs/getting_started/install/deploy/deploy.md +++ b/docs/getting_started/install/deploy/deploy.md @@ -60,12 +60,8 @@ For the entire installation process of DB-GPT, we use the miniconda3 virtual env python>=3.10 conda create -n dbgpt_env python=3.10 conda activate dbgpt_env +# it will take some minutes pip install -e ".[default]" -``` -Before use DB-GPT Knowledge -```bash -python -m spacy download zh_core_web_sm - ``` Once the environment is installed, we have to create a new folder "models" in the DB-GPT project, and then we can put all the models downloaded from huggingface in this directory @@ -78,26 +74,34 @@ centos:yum install git-lfs ubuntu:apt-get install git-lfs macos:brew install git-lfs +``` +##### Download LLM Model and Embedding Model + +If you use OpenAI llm service, see [LLM Use FAQ](https://db-gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html) + +```{tip} +If you use openai or Axzure or tongyi llm api service, you don't need to download llm model. + ``` ```bash cd DB-GPT mkdir models and cd models -#### llm model -git clone https://huggingface.co/lmsys/vicuna-13b-v1.5 -or -git clone https://huggingface.co/THUDM/chatglm2-6b #### embedding model git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese or git clone https://huggingface.co/moka-ai/m3e-large + +#### llm model, if you use openai or Azure or tongyi llm api service, you don't need to download llm model +git clone https://huggingface.co/lmsys/vicuna-13b-v1.5 +or +git clone https://huggingface.co/THUDM/chatglm2-6b + ``` The model files are large and will take a long time to download. During the download, let's configure the .env file, which needs to be copied and created from the .env.template -if you want to use openai llm service, see [LLM Use FAQ](https://db-gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html) - ```{tip} cp .env.template .env ``` @@ -108,7 +112,7 @@ You can configure basic parameters in the .env file, for example setting LLM_MOD ### 3. Run -**(Optional) load examples into SQLlite** +**(Optional) load examples into SQLite** ```bash bash ./scripts/examples/load_examples.sh ``` @@ -118,7 +122,7 @@ On windows platform: .\scripts\examples\load_examples.bat ``` -1.Run db-gpt server +Run db-gpt server ```bash python pilot/server/dbgpt_server.py @@ -126,19 +130,6 @@ python pilot/server/dbgpt_server.py Open http://localhost:5000 with your browser to see the product. -```{tip} -If you want to access an external LLM service, you need to - -1.set the variables LLM_MODEL=YOUR_MODEL_NAME, MODEL_SERVER=YOUR_MODEL_SERVER(eg:http://localhost:5000) in the .env file. - -2.execute dbgpt_server.py in light mode -``` - -If you want to learn about dbgpt-webui, read https://github./csunny/DB-GPT/tree/new-page-framework/datacenter - -```bash -python pilot/server/dbgpt_server.py --light -``` ### Multiple GPUs diff --git a/docs/locales/zh_CN/LC_MESSAGES/getting_started/faq/llm/llm_faq.po b/docs/locales/zh_CN/LC_MESSAGES/getting_started/faq/llm/llm_faq.po index 8b588f5ed..c0791b7cb 100644 --- a/docs/locales/zh_CN/LC_MESSAGES/getting_started/faq/llm/llm_faq.po +++ b/docs/locales/zh_CN/LC_MESSAGES/getting_started/faq/llm/llm_faq.po @@ -8,7 +8,7 @@ msgid "" msgstr "" "Project-Id-Version: DB-GPT 👏👏 0.3.5\n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: 2023-09-25 20:58+0800\n" +"POT-Creation-Date: 2023-10-20 22:29+0800\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language: zh_CN\n" @@ -19,33 +19,34 @@ msgstr "" "Content-Transfer-Encoding: 8bit\n" "Generated-By: Babel 2.12.1\n" -#: ../../getting_started/faq/llm/llm_faq.md:1 0d4fc79dbfce4f968ab310de12d69f3b +#: ../../getting_started/faq/llm/llm_faq.md:1 54763acec7da4deb90669195c54ec3a1 msgid "LLM USE FAQ" msgstr "LLM模型使用FAQ" -#: ../../getting_started/faq/llm/llm_faq.md:3 08873df3ef2741dca8916c4c0d503b4f +#: ../../getting_started/faq/llm/llm_faq.md:3 66f73fd2ee7b462e92d3f263792a5e33 msgid "Q1:how to use openai chatgpt service" msgstr "我怎么使用OPENAI服务" -#: ../../getting_started/faq/llm/llm_faq.md:4 7741b098acd347659ccf663b5323666c -msgid "change your LLM_MODEL" +#: ../../getting_started/faq/llm/llm_faq.md:4 9d178d8462b74cb188bbacf2ac2ac12b +#, fuzzy +msgid "change your LLM_MODEL in `.env`" msgstr "通过在.env文件设置LLM_MODEL" -#: ../../getting_started/faq/llm/llm_faq.md:9 018115ec074c48739b730310a8bafa44 +#: ../../getting_started/faq/llm/llm_faq.md:9 f7ca82f257be4ac09639a7f8af5e83eb msgid "set your OPENAPI KEY" msgstr "set your OPENAPI KEY" -#: ../../getting_started/faq/llm/llm_faq.md:16 42408d9c11994a848da41c3ab87d7a78 +#: ../../getting_started/faq/llm/llm_faq.md:16 d6255b20dce34a2690df7e2af3505d97 msgid "make sure your openapi API_KEY is available" msgstr "确认openapi API_KEY是否可用" -#: ../../getting_started/faq/llm/llm_faq.md:18 d9aedc07578d4562bad0ba1f130651de +#: ../../getting_started/faq/llm/llm_faq.md:18 6f1c6dbdb31f4210a6d21f0f3a6ae589 msgid "" "Q2 What difference between `python dbgpt_server --light` and `python " "dbgpt_server`" msgstr "Q2 `python dbgpt_server --light` 和 `python dbgpt_server`的区别是什么?" -#: ../../getting_started/faq/llm/llm_faq.md:21 03c03fedaa2f4bfdaefb42fd4164c902 +#: ../../getting_started/faq/llm/llm_faq.md:20 b839771ae9e34e998b0edf8d69deabdd msgid "" "`python dbgpt_server --light` dbgpt_server does not start the llm " "service. Users can deploy the llm service separately by using `python " @@ -57,54 +58,75 @@ msgstr "" "用户可以通过`python " "llmserver`单独部署模型服务,dbgpt_server通过LLM_SERVER环境变量来访问模型服务。目的是为了可以将dbgpt后台服务和大模型服务分离部署。" -#: ../../getting_started/faq/llm/llm_faq.md:23 61354a0859284346adc3e07c820aa61a +#: ../../getting_started/faq/llm/llm_faq.md:22 aba39cef6fe84799bcd03e8f36c41296 msgid "" "`python dbgpt_server` dbgpt_server service and the llm service are " "deployed on the same instance. when dbgpt_server starts the service, it " "also starts the llm service at the same time." msgstr "`python dbgpt_server` 是将后台服务和模型服务部署在同一台实例上.dbgpt_server在启动服务的时候同时开启模型服务." -#: ../../getting_started/faq/llm/llm_faq.md:27 41ee95bf0b224be995f7530d0b67f712 +#: ../../getting_started/faq/llm/llm_faq.md:27 c65270d479af49e28e99b35a7932adbd +msgid "" +"If you want to access an external LLM service(deployed by DB-GPT), you " +"need to" +msgstr "如果模型服务部署(通过DB-GPT部署)在别的机器,想通过dbgpt服务访问模型服务" + +#: ../../getting_started/faq/llm/llm_faq.md:29 da153e6d18c543f28e0c4e85618e3d3d +msgid "" +"1.set the variables LLM_MODEL=YOUR_MODEL_NAME, " +"MODEL_SERVER=YOUR_MODEL_SERVER(eg:http://localhost:5000) in the .env " +"file." +msgstr "" + +#: ../../getting_started/faq/llm/llm_faq.md:31 cd89b8a2075f4407b8036a74151a6377 +msgid "2.execute dbgpt_server.py in light mode" +msgstr "2.execute dbgpt_server.py light 模式" + +#: ../../getting_started/faq/llm/llm_faq.md:33 8f4b9401ac4f4a25a7479bee9ef5e8c1 +msgid "python pilot/server/dbgpt_server.py --light" +msgstr "" + +#: ../../getting_started/faq/llm/llm_faq.md:38 69e1064cd7554ce6b49da732f800eacc #, fuzzy -msgid "Q3 how to use MultiGPUs" +msgid "Q3 How to use MultiGPUs" msgstr "Q2 怎么使用 MultiGPUs" -#: ../../getting_started/faq/llm/llm_faq.md:29 7fce22f0327646399b98b0e20574a2fd +#: ../../getting_started/faq/llm/llm_faq.md:40 6de3f105ce96430db5756f38bbd9ca12 msgid "" "DB-GPT will use all available gpu by default. And you can modify the " "setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu" " IDs." msgstr "DB-GPT默认加载可利用的gpu,你也可以通过修改 在`.env`文件 `CUDA_VISIBLE_DEVICES=0,1`来指定gpu IDs" -#: ../../getting_started/faq/llm/llm_faq.md:32 3f4eb824dc924d7ca309dc5057f8360a +#: ../../getting_started/faq/llm/llm_faq.md:43 87cb9bfb20af4b259d719df797c42a7d msgid "" "Optionally, you can also specify the gpu ID to use before the starting " "command, as shown below:" msgstr "你也可以指定gpu ID启动" -#: ../../getting_started/faq/llm/llm_faq.md:42 a77d72f91b864d0aac344b317c100950 +#: ../../getting_started/faq/llm/llm_faq.md:53 bcfa35cda6304ee5ab9a775a2d4eda63 msgid "" "You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to " "configure the maximum memory used by each GPU." msgstr "同时你可以通过在.env文件设置`MAX_GPU_MEMORY=xxGib`修改每个GPU的最大使用内存" -#: ../../getting_started/faq/llm/llm_faq.md:44 b3bb92777a1244d5967a4308d14722fc +#: ../../getting_started/faq/llm/llm_faq.md:55 a05c5484927844c8bb4791f0a9ccc82e #, fuzzy msgid "Q4 Not Enough Memory" msgstr "Q3 机器显存不够 " -#: ../../getting_started/faq/llm/llm_faq.md:46 c3976d81aafa4c6081e37c0d0a115d96 +#: ../../getting_started/faq/llm/llm_faq.md:57 fe17a023b6eb4a92b1b927e1b94e3784 msgid "DB-GPT supported 8-bit quantization and 4-bit quantization." msgstr "DB-GPT 支持 8-bit quantization 和 4-bit quantization." -#: ../../getting_started/faq/llm/llm_faq.md:48 93ade142f949449d8f54c0b6d8c8d261 +#: ../../getting_started/faq/llm/llm_faq.md:59 76c3684c10864b8e87e5c2255b6c0b7f msgid "" "You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` " "in `.env` file to use quantization(8-bit quantization is enabled by " "default)." msgstr "你可以通过在.env文件设置`QUANTIZE_8bit=True` or `QUANTIZE_4bit=True`" -#: ../../getting_started/faq/llm/llm_faq.md:50 be2573907d624ebf8c901301f938577b +#: ../../getting_started/faq/llm/llm_faq.md:61 c5d849a38f1a4f0687bbcffb6699dc39 msgid "" "Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit" " quantization can run with 48 GB of VRAM." @@ -112,45 +134,45 @@ msgstr "" "Llama-2-70b with 8-bit quantization 可以运行在 80 GB VRAM机器, 4-bit " "quantization可以运行在 48 GB VRAM" -#: ../../getting_started/faq/llm/llm_faq.md:52 c084d4624e794f7e8ceebadb6f260b49 +#: ../../getting_started/faq/llm/llm_faq.md:63 867329a5e3b0403083e96f72b8747fb2 msgid "" "Note: you need to install the latest dependencies according to " "[requirements.txt](https://github.com/eosphoros-ai/DB-" "GPT/blob/main/requirements.txt)." msgstr "" -#: ../../getting_started/faq/llm/llm_faq.md:54 559bcd62af7340f79f5eca817187e13e +#: ../../getting_started/faq/llm/llm_faq.md:65 60ceee25e9fb4ddba40c5306bfb0a82f #, fuzzy msgid "Q5 How to Add LLM Service dynamic local mode" msgstr "Q5 怎样动态新增模型服务" -#: ../../getting_started/faq/llm/llm_faq.md:56 e47101d7d47e486e8572f6acd609fa92 +#: ../../getting_started/faq/llm/llm_faq.md:67 c99eb7f7ae844884a8f0da94238ea7e0 msgid "" "Now DB-GPT through multi-llm service switch, so how to add llm service " "dynamic," msgstr "DB-GPT支持多个模型服务切换, 怎样添加一个模型服务呢" -#: ../../getting_started/faq/llm/llm_faq.md:67 5710dd9bf8f54bd388354079b29acdd2 +#: ../../getting_started/faq/llm/llm_faq.md:78 cd89b8a2075f4407b8036a74151a6377 #, fuzzy msgid "Q6 How to Add LLM Service dynamic in remote mode" msgstr "Q5 怎样动态新增模型服务" -#: ../../getting_started/faq/llm/llm_faq.md:68 9c9311d6daad402a8e0748f00e69e8cf +#: ../../getting_started/faq/llm/llm_faq.md:79 8833ce89465848259b08ef0a4fa68d96 msgid "" "If you deploy llm service in remote machine instance, and you want to " "add model service to dbgpt server to manage" msgstr "如果你想在远程机器实例部署大模型服务并添加到本地dbgpt_server进行管理" -#: ../../getting_started/faq/llm/llm_faq.md:70 3ec1565e74384beab23df9d8d4a19a39 +#: ../../getting_started/faq/llm/llm_faq.md:81 992eb37e3cca48829636c15ba3ec2ee8 msgid "use dbgpt start worker and set --controller_addr." msgstr "使用1`dbgpt start worker`命令并设置注册地址--controller_addr" -#: ../../getting_started/faq/llm/llm_faq.md:80 e2b8a9119f7843beb787d021c973eea4 +#: ../../getting_started/faq/llm/llm_faq.md:91 0d06d7d6dd3d4780894ecd914c89b5a2 #, fuzzy msgid "Q7 dbgpt command not found" msgstr "Q6 dbgpt command not found" -#: ../../getting_started/faq/llm/llm_faq.md:86 257ae9c462cd4a9abe7d2ff00f6bc891 +#: ../../getting_started/faq/llm/llm_faq.md:97 5d9beed0d95a4503a43d0e025664273b msgid "" "Q8 When starting the worker_manager on a cloud server and registering it " "with the controller, it is noticed that the worker's exposed IP is a " diff --git a/docs/locales/zh_CN/LC_MESSAGES/getting_started/install/deploy/deploy.po b/docs/locales/zh_CN/LC_MESSAGES/getting_started/install/deploy/deploy.po index 4f131124d..0ed8cfcd9 100644 --- a/docs/locales/zh_CN/LC_MESSAGES/getting_started/install/deploy/deploy.po +++ b/docs/locales/zh_CN/LC_MESSAGES/getting_started/install/deploy/deploy.po @@ -8,7 +8,7 @@ msgid "" msgstr "" "Project-Id-Version: DB-GPT 👏👏 0.3.5\n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: 2023-10-17 14:35+0800\n" +"POT-Creation-Date: 2023-10-20 22:29+0800\n" "PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n" "Last-Translator: FULL NAME \n" "Language: zh_CN\n" @@ -20,47 +20,47 @@ msgstr "" "Generated-By: Babel 2.12.1\n" #: ../../getting_started/install/deploy/deploy.md:1 -#: 73f932b662564edba45fbd711fd19005 +#: 7bcf028ff0884ea88f25b7e2c9608153 msgid "Installation From Source" msgstr "源码安装" #: ../../getting_started/install/deploy/deploy.md:3 -#: 70b623827a26447cb9382f1cb568b93c +#: 61f0b1135c84423bbaeb5f9f0942ad7d msgid "" "This tutorial gives you a quick walkthrough about use DB-GPT with you " "environment and data." msgstr "本教程为您提供了关于如何使用DB-GPT的使用指南。" #: ../../getting_started/install/deploy/deploy.md:5 -#: 6102ada4b19a4062947ad0ee5305dad5 +#: d7622cd5f69f4a32b3c8e979c6b9f601 msgid "Installation" msgstr "安装" #: ../../getting_started/install/deploy/deploy.md:7 -#: 7c006c0c72944049bba43fd95daf1bd1 +#: 4368072b6384496ebeaff3c09ca2f888 msgid "To get started, install DB-GPT with the following steps." msgstr "请按照以下步骤安装DB-GPT" #: ../../getting_started/install/deploy/deploy.md:9 -#: eac8c7f921a042b79b4d0032c01b095a +#: 0dfdf8ac6e314fe7b624a685d9beebd5 msgid "1. Hardware Requirements" msgstr "1. 硬件要求" #: ../../getting_started/install/deploy/deploy.md:10 -#: 8c430e2db5ce41e8b9d22e6e13c62cb3 +#: cff920f8732f4f1da3063ec2bc099271 msgid "" "DB-GPT can be deployed on servers with low hardware requirements or on " "servers with high hardware requirements." msgstr "DB-GPT可以部署在对硬件要求不高的服务器,也可以部署在对硬件要求高的服务器" #: ../../getting_started/install/deploy/deploy.md:12 -#: a6b042509e1149fa8213a014e42eaaae +#: 8e3818824d6146c6b265731c277fbd0b #, fuzzy msgid "Low hardware requirements" msgstr "1. 硬件要求" #: ../../getting_started/install/deploy/deploy.md:13 -#: 577c8c4edc2e4f45963b2a668385852f +#: ca95d66526994173ac1fea20bdea5d67 msgid "" "The low hardware requirements mode is suitable for integrating with " "third-party LLM services' APIs, such as OpenAI, Tongyi, Wenxin, or " @@ -68,23 +68,23 @@ msgid "" msgstr "Low hardware requirements模式适用于对接第三方模型服务的api,比如OpenAI, 通义千问, 文心.cpp。" #: ../../getting_started/install/deploy/deploy.md:15 -#: 384475d3a87043eb9eebc384052ac9cc +#: 83fc53cc1b4248139f69f490b859ad8d msgid "DB-GPT provides set proxy api to support LLM api." msgstr "DB-GPT可以通过设置proxy api来支持第三方大模型服务" #: ../../getting_started/install/deploy/deploy.md:17 -#: e5bd8a999adb4e07b8b5221f1893251d +#: 418a9f24eafc4571b74d86c3f1e57a2d msgid "As our project has the ability to achieve ChatGPT performance of over 85%," msgstr "由于我们的项目有能力达到85%以上的ChatGPT性能" #: ../../getting_started/install/deploy/deploy.md:19 -#: 6a97ed5893414e17bb9c1f8bb21bc965 +#: 6f85149ab0024cc99e43804206a595ed #, fuzzy msgid "High hardware requirements" msgstr "1. 硬件要求" #: ../../getting_started/install/deploy/deploy.md:20 -#: d0c248939b4143a2b01afd051b02ec12 +#: 31635ffff5084814a14deb3220dd2c17 #, fuzzy msgid "" "The high hardware requirements mode is suitable for independently " @@ -93,70 +93,72 @@ msgid "" "requirements. However, overall, the project can be deployed and used on " "consumer-grade graphics cards. The specific hardware requirements for " "deployment are as follows:" -msgstr "High hardware requirements模式适用于需要独立部署私有大模型服务,比如Llama系列模型,Baichuan, chatglm,vicuna等私有大模型所以对硬件有一定的要求。但总体来说,我们在消费级的显卡上即可完成项目的部署使用,具体部署的硬件说明如下:" +msgstr "" +"High hardware requirements模式适用于需要独立部署私有大模型服务,比如Llama系列模型,Baichuan, " +"chatglm,vicuna等私有大模型所以对硬件有一定的要求。但总体来说,我们在消费级的显卡上即可完成项目的部署使用,具体部署的硬件说明如下:" #: ../../getting_started/install/deploy/deploy.md -#: 2ee432394f6b4d9cb0a424f4b99bf3be +#: d806b90be1614ad3b2e06c92f4b17e5c msgid "GPU" msgstr "GPU" #: ../../getting_started/install/deploy/deploy.md -#: 4cd716486f994080880f84853b047a5d +#: 4b02f41145484389ace0b547384ac269 bbba2ff3fab94482a1761264264deef9 msgid "VRAM Size" msgstr "显存" #: ../../getting_started/install/deploy/deploy.md -#: d1b33d0348894bfc8a843a3d38c6daaa +#: 0ea63c2dcc0e43858a61e01d59ad09f9 msgid "Performance" msgstr "Performance" #: ../../getting_started/install/deploy/deploy.md -#: d5850bbe7d0a430d993b7e6bd1f24bff +#: 6521683eb91e450c928a72688550a63d msgid "RTX 4090" msgstr "RTX 4090" #: ../../getting_started/install/deploy/deploy.md -#: c7d15be08ac74624bbfb5eb4554fc7ff +#: bb6340c9cdc048fbb0ed55defc1aaeb6 d991b39845ee404198e1a1e35cc416f3 msgid "24 GB" msgstr "24 GB" #: ../../getting_started/install/deploy/deploy.md -#: 219dff2fee83460da55d9d628569365e +#: 4134d3a89d364e33b2bdf1c7667e4755 msgid "Smooth conversation inference" msgstr "丝滑的对话体验" #: ../../getting_started/install/deploy/deploy.md -#: 56025c5f37984963943de7accea85850 +#: 096ff425ac7646a990a7133961c6e6af msgid "RTX 3090" msgstr "RTX 3090" #: ../../getting_started/install/deploy/deploy.md -#: 8a0b8a0afa0c4cc39eb7c2271775cf60 +#: ecf670cdbec3493f804e6a785a83c608 msgid "Smooth conversation inference, better than V100" msgstr "丝滑的对话体验,性能好于V100" #: ../../getting_started/install/deploy/deploy.md -#: 2fc5e6ac8a6b4c508944c659adffa0c1 +#: 837b14e0a3d243bda0df7ab35b70b7e7 msgid "V100" msgstr "V100" #: ../../getting_started/install/deploy/deploy.md -#: f92a1393539a49db983b06f7276f446b +#: 3b20a087c8e342c89ccb807ffc3817c2 b8b6b45253084436a5893896b35a2bd5 msgid "16 GB" msgstr "16 GB" #: ../../getting_started/install/deploy/deploy.md -#: 4e7de52a58d24a0bb10e45e1435128a6 +#: 772e18bb0ace4f7ea68b51bfc05816ce 9351389a1fac479cbe67b1f8c2c37de5 msgid "Conversation inference possible, noticeable stutter" msgstr "Conversation inference possible, noticeable stutter" #: ../../getting_started/install/deploy/deploy.md -#: 217fe55f590a497ba6622698945e7be8 +#: aadb62bf48bb49d99a714bcdf3092260 msgid "T4" msgstr "T4" #: ../../getting_started/install/deploy/deploy.md:30 -#: 30ca67fe27f64df093a2d281e1288c5c +#: 4de80d9fcf34470bae806d829836b7d7 #, fuzzy msgid "" "If your VRAM Size is not enough, DB-GPT supported 8-bit quantization and " @@ -164,105 +166,109 @@ msgid "" msgstr "如果你的显存不够,DB-GPT支持8-bit和4-bit量化版本" #: ../../getting_started/install/deploy/deploy.md:32 -#: fc0c3a0730d64e9e98d1b25f4dd5db34 +#: 00d81cbf48b549f3b9128d3840d01b2e msgid "" "Here are some of the VRAM size usage of the models we tested in some " "common scenarios." msgstr "这里是量化版本的相关说明" #: ../../getting_started/install/deploy/deploy.md -#: 1f1f6c10209b446f99d520fdb68e0f5d +#: dc346f2bca794bb7ae34b330e82ccbcf msgid "Model" msgstr "Model" #: ../../getting_started/install/deploy/deploy.md -#: 18e3240d407e41f88028b24aeced1bf4 +#: 8de6cd40de78460ba774650466f8df26 msgid "Quantize" msgstr "Quantize" #: ../../getting_started/install/deploy/deploy.md -#: 03aa79d3c3f54e3c834180b0d1ed9a5c +#: 3e412b8f4852482ab07a0f546e37ae7f f30054e0558b41a192cc9a2462b299ec msgid "vicuna-7b-v1.5" msgstr "vicuna-7b-v1.5" #: ../../getting_started/install/deploy/deploy.md -#: 09419ad0a88c4179979505ef71204fd6 1b4ab0186184493d895eeec12d078c52 -#: 6acec7b76e604343885aa71d92b04d1e 9b73ca1c18d14972b894db69438e3fb2 -#: b869995505ae4895b9f13e271470e5cb c9eaf983eeb2486da08e628728ae301f -#: ff0a86dc63ce4cd580f354d15d333501 +#: 14358fa40cf94614acf39a803987631f 2a3f52b26b444783be04ffa795246a03 +#: 3956734b19aa44c3be08d56348b47a38 751034ca7d00447895fda1d9b8a7364f +#: a66d16e5424a42a3a1309dfb8ffc33f9 b8ebce0a9e7e481da5f16214f955665d +#: f533b3f37e6f4594aec5e0f59f241683 msgid "4-bit" msgstr "4-bit" #: ../../getting_started/install/deploy/deploy.md -#: d0d959f022f44bbeb34d67ccf49ba3bd +#: 9eac7e866ebe45169c64a952c363ce43 aa56722db3014abd9022067ed5fc4f98 +#: af4df898fb47471fbb487fcf6e2d40d6 msgid "8 GB" msgstr "8 GB" #: ../../getting_started/install/deploy/deploy.md -#: 01cb7be0064940e8a637df7ed8e15310 13568d8a793b4c2db655f89dc690929a -#: 28ce31711f91455b9b910276fa059c65 2dddf2e87a70452fb27a627d62464346 -#: 3f3f4dc00acb43258dce311f144e0fd7 5aa76fd2fb35474e8d06795e7369ceb4 -#: d660be499efc4b6ca61da0d5af758620 +#: 211aaf2e234d46108b5eee5006d5f4bb 40214b2f71ce452db3501ea9d81a0c8a +#: 72fcd5e0634e48d79813f1037e6acb45 7756b67568cc40c4b73079b26e79c85d +#: 8c21f8e90154407682c093a46b93939d ad937c14bbcd41ac92a3dbbdb8339eed +#: d1e7ee217dd64b15b934456c3a72c450 msgid "8-bit" msgstr "8-bit" #: ../../getting_started/install/deploy/deploy.md -#: 3b963a1ce6934229ba7658cb407b6a52 +#: 4812504dfb9a4b25a5db773d9a08f34f 76ae2407ba4e4013953b9f243d9a5d92 +#: 927054919de047fd8a83df67e1400622 9773e73eb89847f8a85a2dc55b562916 +#: ce33d0c3792f43398fc7e2694653d8fc d3dc0d4cceb24d2b9dc5c7120fbed94e msgid "12 GB" msgstr "12 GB" #: ../../getting_started/install/deploy/deploy.md -#: 30d28dcaa64545198aaa20fe4562bb6d +#: 83e6d6ba1aa74946858f0162424752ab b6b99caeaeff44c488e3e819ed337074 msgid "vicuna-13b-v1.5" msgstr "vicuna-13b-v1.5" #: ../../getting_started/install/deploy/deploy.md -#: 28de25a1952049d2b7aff41020e428ff +#: 492c5f0d560946fe879f6c339975ba37 970063dda21e4dd8be6f89a3c87832a5 +#: a66bad6054b24dd99b370312bc8b6fa6 msgid "20 GB" msgstr "20 GB" #: ../../getting_started/install/deploy/deploy.md -#: 535974c886b14c618ca84de1fe63d5e4 +#: a75f3405085441d8920db49f159588d2 cf635931c55846aea4cbccd92e4f0377 msgid "llama-2-7b" msgstr "llama-2-7b" #: ../../getting_started/install/deploy/deploy.md -#: cc04760a8b9e4a79a7dada9a11abda2c +#: 61d632df8c5149b393d03ac802141125 bc98c895d457495ea26e3537de83b432 msgid "llama-2-13b" msgstr "llama-2-13b" #: ../../getting_started/install/deploy/deploy.md -#: 9e83d8d5ae44411dba4cc6c2d796b20f +#: 3ccb1f6d8a924aeeacb5373edc168103 9ecce68e159a4649a8d5e69157af17a1 msgid "llama-2-70b" msgstr "llama-2-70b" #: ../../getting_started/install/deploy/deploy.md -#: cb6ce389adfc463a9c851eb1e4abfcff +#: ca1da6ce08674b3daa0ab9ee0330203f msgid "48 GB" msgstr "48 GB" #: ../../getting_started/install/deploy/deploy.md -#: 906d664156084223a4efa0ae9804bd33 +#: 34d4d20e57c1410fbdcabd09a5968cdd msgid "80 GB" msgstr "80 GB" #: ../../getting_started/install/deploy/deploy.md -#: 957fb0c6f3114a63ba33a1cfb31060e3 +#: 4ec2213171054c96ac9cd46e259ce7bf 68a1752f76a54287a73e82724723ea75 msgid "baichuan-7b" msgstr "baichuan-7b" #: ../../getting_started/install/deploy/deploy.md -#: 5f3bc4cf57d946cfb38a941250685151 +#: 103b020a575744ad964c60a367aa1651 c659a720a1024869b09d7cc161bcd8a2 msgid "baichuan-13b" msgstr "baichuan-13b" #: ../../getting_started/install/deploy/deploy.md:51 -#: 87ae8c58df314b69ae119aa831cb7dd5 +#: 2259a008d0e14f9e8d1e1d9234b97298 msgid "2. Install" msgstr "2. Install" #: ../../getting_started/install/deploy/deploy.md:56 -#: 79cdebf089614761bf4299a9ce601b81 +#: 875c7d8e32574552a48199577c78ccdd msgid "" "We use Sqlite as default database, so there is no need for database " "installation. If you choose to connect to other databases, you can " @@ -276,70 +282,78 @@ msgstr "" "GPT快速部署不需要部署相关数据库服务。如果你想使用其他数据库,需要先部署相关数据库服务。我们目前使用Miniconda进行python环境和包依赖管理[安装" " Miniconda](https://docs.conda.io/en/latest/miniconda.html)" -#: ../../getting_started/install/deploy/deploy.md:65 -#: 03ff2f444721454588095bb348220276 -msgid "Before use DB-GPT Knowledge" -msgstr "在使用知识库之前" - -#: ../../getting_started/install/deploy/deploy.md:71 -#: b6faa4d078a046d6a7c0313e8deef0f3 +#: ../../getting_started/install/deploy/deploy.md:67 +#: c03e3290e1144320a138d015171ac596 msgid "" "Once the environment is installed, we have to create a new folder " "\"models\" in the DB-GPT project, and then we can put all the models " "downloaded from huggingface in this directory" msgstr "如果你已经安装好了环境需要创建models, 然后到huggingface官网下载模型" -#: ../../getting_started/install/deploy/deploy.md:74 -#: f43fd2b74d994bf6bb4016e88c43d51a +#: ../../getting_started/install/deploy/deploy.md:70 +#: 933401ac909741ada4acf6bcd4142ed6 msgid "Notice make sure you have install git-lfs" -msgstr "" +msgstr "注意确认你已经安装了git-lfs" -#: ../../getting_started/install/deploy/deploy.md:76 -#: f558a7ee728a4344af576aa375b43092 +#: ../../getting_started/install/deploy/deploy.md:72 +#: e8e4886a83dd402c85fe3fa989322991 msgid "centos:yum install git-lfs" msgstr "" -#: ../../getting_started/install/deploy/deploy.md:78 -#: bab08604a3ba45b9b827ff5a4b931601 +#: ../../getting_started/install/deploy/deploy.md:74 +#: 5ead7e98bddf4fa4845c3d3955f18054 msgid "ubuntu:apt-get install git-lfs" msgstr "" -#: ../../getting_started/install/deploy/deploy.md:80 -#: b4a107e5f8524acc9aed74318880f9f3 +#: ../../getting_started/install/deploy/deploy.md:76 +#: 08acfaaaa2544182a59df54cdf61cd84 msgid "macos:brew install git-lfs" msgstr "" -#: ../../getting_started/install/deploy/deploy.md:97 -#: ecb5fa1f18154685bb4336d04ac3a386 +#: ../../getting_started/install/deploy/deploy.md:78 +#: 312ad44170c34531865576067c58701a +msgid "Download LLM Model and Embedding Model" +msgstr "下载LLM模型和Embedding模型" + +#: ../../getting_started/install/deploy/deploy.md:80 +#: de54793643434528a417011d2919b2c4 +#, fuzzy +msgid "" +"If you use OpenAI llm service, see [LLM Use FAQ](https://db-" +"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)" +msgstr "" +"如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-" +"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)" + +#: ../../getting_started/install/deploy/deploy.md:83 +#: 50ec1eb7c56a46ac8fbf911c7adc9b0e +msgid "" +"If you use openai or Azure or tongyi llm api service, you don't need to " +"download llm model." +msgstr "如果你想通过openai or Azure or tongyi第三方api访问模型服务,你可以不用下载llm模型" + +#: ../../getting_started/install/deploy/deploy.md:103 +#: 03950b2a480149388fb7b88f7d251ef5 msgid "" "The model files are large and will take a long time to download. During " "the download, let's configure the .env file, which needs to be copied and" " created from the .env.template" msgstr "模型文件很大,需要很长时间才能下载。在下载过程中,让我们配置.env文件,它需要从。env.template中复制和创建。" -#: ../../getting_started/install/deploy/deploy.md:99 -#: 0f08b0ecbea14cbdba29ea8d87cf24b4 -msgid "" -"if you want to use openai llm service, see [LLM Use FAQ](https://db-" -"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)" -msgstr "" -"如果想使用openai大模型服务, 可以参考[LLM Use FAQ](https://db-" -"gpt.readthedocs.io/en/latest/getting_started/faq/llm/llm_faq.html)" - -#: ../../getting_started/install/deploy/deploy.md:102 -#: 6efb9a45ab2c45c7b4770f987b639c52 +#: ../../getting_started/install/deploy/deploy.md:106 +#: 441c4333216a402a84fd52f8e56fc81b msgid "cp .env.template .env" msgstr "cp .env.template .env" -#: ../../getting_started/install/deploy/deploy.md:105 -#: b9d2b81a2cf440c3b49a5c06759eb2ba +#: ../../getting_started/install/deploy/deploy.md:109 +#: 4eac3d98df6a4e788234ff0ec1ffd03e msgid "" "You can configure basic parameters in the .env file, for example setting " "LLM_MODEL to the model to be used" msgstr "您可以在.env文件中配置基本参数,例如将LLM_MODEL设置为要使用的模型。" -#: ../../getting_started/install/deploy/deploy.md:107 -#: 2f6afa40ca994115b16ba28baaf65bde +#: ../../getting_started/install/deploy/deploy.md:111 +#: a36bd6d6236b4c74b161a935ae792b91 msgid "" "([Vicuna-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) based on " "llama-2 has been released, we recommend you set `LLM_MODEL=vicuna-" @@ -349,107 +363,81 @@ msgstr "" "/vicuna-13b-v1.5), " "目前Vicuna-v1.5模型(基于llama2)已经开源了,我们推荐你使用这个模型通过设置LLM_MODEL=vicuna-13b-v1.5" -#: ../../getting_started/install/deploy/deploy.md:109 -#: 7c5883f9594646198f464e6dafb2f0ff +#: ../../getting_started/install/deploy/deploy.md:113 +#: 78334cbf0c364eb3bc41a2a6c55ebb0d msgid "3. Run" msgstr "3. Run" -#: ../../getting_started/install/deploy/deploy.md:111 -#: 0e3719a238eb4332b7c15efa3f16e3e2 -msgid "**(Optional) load examples into SQLlite**" +#: ../../getting_started/install/deploy/deploy.md:115 +#: 6d5ad6eb067d4e9fa1c574b7b706233f +msgid "**(Optional) load examples into SQLite**" msgstr "" -#: ../../getting_started/install/deploy/deploy.md:116 -#: c901055131ce4688b1c602393913b675 +#: ../../getting_started/install/deploy/deploy.md:120 +#: 07219a4ed3c44e349314ae04ebdf58e1 msgid "On windows platform:" msgstr "" -#: ../../getting_started/install/deploy/deploy.md:121 -#: 777a50f9167c4b8f9c2a96682ccc4c4a -msgid "1.Run db-gpt server" +#: ../../getting_started/install/deploy/deploy.md:125 +#: 819be2bb22044440ae00c2e7687ea249 +#, fuzzy +msgid "Run db-gpt server" msgstr "1.Run db-gpt server" -#: ../../getting_started/install/deploy/deploy.md:127 -#: 62aafb652df8478281ab633d8d082e7f +#: ../../getting_started/install/deploy/deploy.md:131 +#: 5ba6d7c9bf9146c797036ab4b9b4f59e msgid "Open http://localhost:5000 with your browser to see the product." msgstr "打开浏览器访问http://localhost:5000" -#: ../../getting_started/install/deploy/deploy.md:130 -#: cff18fc20ffd4716bc7cf377730dd5ec -msgid "If you want to access an external LLM service, you need to" -msgstr "" - -#: ../../getting_started/install/deploy/deploy.md:132 -#: f27c3aa9e627480a96cd04fcd4bfdaec -msgid "" -"1.set the variables LLM_MODEL=YOUR_MODEL_NAME, " -"MODEL_SERVER=YOUR_MODEL_SERVER(eg:http://localhost:5000) in the .env " -"file." -msgstr "" - #: ../../getting_started/install/deploy/deploy.md:134 -#: e05a395f67924514929cd025fab67e44 -msgid "2.execute dbgpt_server.py in light mode" -msgstr "" - -#: ../../getting_started/install/deploy/deploy.md:137 -#: a5d7fcb46ba446bf9913646b28b036ed -msgid "" -"If you want to learn about dbgpt-webui, read https://github./csunny/DB-" -"GPT/tree/new-page-framework/datacenter" -msgstr "" -"如果你想了解web-ui, 请访问https://github./csunny/DB-GPT/tree/new-page-" -"framework/datacenter" - -#: ../../getting_started/install/deploy/deploy.md:143 -#: 90c614e7744c4a7f843adb8968b58c78 +#: be3a2729ef3b4742a403017b31bda7e3 #, fuzzy msgid "Multiple GPUs" msgstr "4. Multiple GPUs" -#: ../../getting_started/install/deploy/deploy.md:145 -#: 7b72e7cbd9d246299de5986772df4825 +#: ../../getting_started/install/deploy/deploy.md:136 +#: 00ffa1cc145e4afa830c592a629246f9 msgid "" "DB-GPT will use all available gpu by default. And you can modify the " "setting `CUDA_VISIBLE_DEVICES=0,1` in `.env` file to use the specific gpu" " IDs." msgstr "DB-GPT默认加载可利用的gpu,你也可以通过修改 在`.env`文件 `CUDA_VISIBLE_DEVICES=0,1`来指定gpu IDs" -#: ../../getting_started/install/deploy/deploy.md:147 -#: b7e2f7bbf625464489b3fd9aedb0ed59 +#: ../../getting_started/install/deploy/deploy.md:138 +#: bde32a5a8fea4350868be579e9ee6baa msgid "" "Optionally, you can also specify the gpu ID to use before the starting " "command, as shown below:" msgstr "你也可以指定gpu ID启动" -#: ../../getting_started/install/deploy/deploy.md:157 -#: 69fd2183a143428fb77949f58381d455 +#: ../../getting_started/install/deploy/deploy.md:148 +#: 791ed2db2cff44c48342a7828cbd4c45 msgid "" "You can modify the setting `MAX_GPU_MEMORY=xxGib` in `.env` file to " "configure the maximum memory used by each GPU." msgstr "同时你可以通过在.env文件设置`MAX_GPU_MEMORY=xxGib`修改每个GPU的最大使用内存" -#: ../../getting_started/install/deploy/deploy.md:159 -#: 6cd03b9728f943a4a632aa9b061931f0 +#: ../../getting_started/install/deploy/deploy.md:150 +#: f86b37c8943e4f5595610706e75b4add #, fuzzy msgid "Not Enough Memory" msgstr "5. Not Enough Memory" -#: ../../getting_started/install/deploy/deploy.md:161 -#: 4837aba4c80b42819c1a6345de0aa820 +#: ../../getting_started/install/deploy/deploy.md:152 +#: 8a7bd02cbeca497aa8eecaaf1910a6ad msgid "DB-GPT supported 8-bit quantization and 4-bit quantization." msgstr "DB-GPT 支持 8-bit quantization 和 4-bit quantization." -#: ../../getting_started/install/deploy/deploy.md:163 -#: c1a701e9bc4c4439adfb930d0e953cec +#: ../../getting_started/install/deploy/deploy.md:154 +#: 5ad49b99fe774ba79c50de0cd694807c msgid "" "You can modify the setting `QUANTIZE_8bit=True` or `QUANTIZE_4bit=True` " "in `.env` file to use quantization(8-bit quantization is enabled by " "default)." msgstr "你可以通过在.env文件设置`QUANTIZE_8bit=True` or `QUANTIZE_4bit=True`" -#: ../../getting_started/install/deploy/deploy.md:165 -#: 205c101f1f774130a5853dd9b7373d36 +#: ../../getting_started/install/deploy/deploy.md:156 +#: b9c80e92137447da91eb944443144c69 msgid "" "Llama-2-70b with 8-bit quantization can run with 80 GB of VRAM, and 4-bit" " quantization can run with 48 GB of VRAM." @@ -508,3 +496,29 @@ msgstr "" #~ msgid "ubuntu:app-get install git-lfs" #~ msgstr "" +#~ msgid "Before use DB-GPT Knowledge" +#~ msgstr "在使用知识库之前" + +#~ msgid "**(Optional) load examples into SQLlite**" +#~ msgstr "" + +#~ msgid "If you want to access an external LLM service, you need to" +#~ msgstr "" + +#~ msgid "" +#~ "1.set the variables LLM_MODEL=YOUR_MODEL_NAME, " +#~ "MODEL_SERVER=YOUR_MODEL_SERVER(eg:http://localhost:5000) in " +#~ "the .env file." +#~ msgstr "" + +#~ msgid "2.execute dbgpt_server.py in light mode" +#~ msgstr "" + +#~ msgid "" +#~ "If you want to learn about " +#~ "dbgpt-webui, read https://github./csunny/DB-" +#~ "GPT/tree/new-page-framework/datacenter" +#~ msgstr "" +#~ "如果你想了解web-ui, 请访问https://github./csunny/DB-GPT/tree" +#~ "/new-page-framework/datacenter" +