Merge branch 'llm_framework' into dev_ty_06_end

This commit is contained in:
tuyang.yhj 2023-07-03 16:28:56 +08:00
commit b91a6f1c95
20 changed files with 20 additions and 673 deletions

View File

@ -8,7 +8,7 @@ const nextConfig = {
ignoreBuildErrors: true
},
env: {
API_BASE_URL: process.env.API_BASE_URL || 'http://localhost:5000'
API_BASE_URL: process.env.API_BASE_URL || 'https://u158074-879a-d00019a9.westa.seetacloud.com:8443'
}
}

View File

@ -33,9 +33,6 @@ class SourceEmbedding(ABC):
self.vector_store_config = vector_store_config
self.embedding_args = embedding_args
self.embeddings = vector_store_config["embeddings"]
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, vector_store_config
)
@abstractmethod
@register
@ -59,11 +56,17 @@ class SourceEmbedding(ABC):
@register
def index_to_store(self, docs):
"""index to vector store"""
return self.vector_client.load_document(docs)
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
self.vector_client.load_document(docs)
@register
def similar_search(self, doc, topk):
"""vector store similarity_search"""
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
try:
ans = self.vector_client.similar_search(doc, topk)
except NotEnoughElementsException:
@ -71,6 +74,9 @@ class SourceEmbedding(ABC):
return ans
def vector_name_exist(self):
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
return self.vector_client.vector_name_exists()
def source_embedding(self):

View File

@ -3,7 +3,7 @@ from typing import List
from bs4 import BeautifulSoup
from langchain.document_loaders import WebBaseLoader
from langchain.schema import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import CharacterTextSplitter, SpacyTextSplitter
from pilot.configs.config import Config
from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE
@ -33,7 +33,11 @@ class URLEmbedding(SourceEmbedding):
length_function=len,
)
else:
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
text_splitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(text_splitter)
@register

View File

@ -37,7 +37,7 @@ from pilot.conversation import (
from pilot.server.gradio_css import code_highlight_css
from pilot.server.gradio_patch import Chatbot as grChatbot
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
from pilot.embedding_engine.knowledge_embedding import KnowledgeEmbedding
from pilot.utils import build_logger
from pilot.vector_store.extract_tovec import (
get_vector_storelist,
@ -297,54 +297,40 @@ def http_bot(
if ChatScene.ChatWithDbExecute == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"db_name": db_selector,
"user_input": state.last_user_input,
}
elif ChatScene.ChatWithDbQA == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"db_name": db_selector,
"user_input": state.last_user_input,
}
elif ChatScene.ChatExecution == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"plugin_selector": plugin_selector,
"user_input": state.last_user_input,
}
elif ChatScene.ChatNormal == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
}
elif ChatScene.ChatDefaultKnowledge == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
}
elif ChatScene.ChatNewKnowledge == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
"knowledge_name": knowledge_name,
}
elif ChatScene.ChatUrlKnowledge == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
"url": url_input,

View File

@ -1,26 +0,0 @@
from typing import List, Optional
import chardet
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
class EncodeTextLoader(BaseLoader):
"""Load text files."""
def __init__(self, file_path: str, encoding: Optional[str] = None):
"""Initialize with file path."""
self.file_path = file_path
self.encoding = encoding
def load(self) -> List[Document]:
"""Load from file path."""
with open(self.file_path, "rb") as f:
raw_text = f.read()
result = chardet.detect(raw_text)
if result["encoding"] is None:
text = raw_text.decode("utf-8")
else:
text = raw_text.decode(result["encoding"])
metadata = {"source": self.file_path}
return [Document(page_content=text, metadata=metadata)]

View File

@ -1,3 +0,0 @@
from pilot.source_embedding.source_embedding import SourceEmbedding, register
__all__ = ["SourceEmbedding", "register"]

View File

@ -1,55 +0,0 @@
import re
from typing import List
from langchain.text_splitter import CharacterTextSplitter
class CHNDocumentSplitter(CharacterTextSplitter):
def __init__(self, pdf: bool = False, sentence_size: int = None, **kwargs):
super().__init__(**kwargs)
self.pdf = pdf
self.sentence_size = sentence_size
def split_text(self, text: str) -> List[str]:
if self.pdf:
text = re.sub(r"\n{3,}", r"\n", text)
text = re.sub("\s", " ", text)
text = re.sub("\n\n", "", text)
text = re.sub(r"([;.!?。!?\?])([^”’])", r"\1\n\2", text)
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text)
text = re.sub(r'(\{2})([^"’”」』])', r"\1\n\2", text)
text = re.sub(r'([;!?。!?\?]["’”」』]{0,2})([^;!?,。!?\?])', r"\1\n\2", text)
text = text.rstrip()
ls = [i for i in text.split("\n") if i]
for ele in ls:
if len(ele) > self.sentence_size:
ele1 = re.sub(r'([,.]["’”」』]{0,2})([^,.])', r"\1\n\2", ele)
ele1_ls = ele1.split("\n")
for ele_ele1 in ele1_ls:
if len(ele_ele1) > self.sentence_size:
ele_ele2 = re.sub(
r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r"\1\n\2", ele_ele1
)
ele2_ls = ele_ele2.split("\n")
for ele_ele2 in ele2_ls:
if len(ele_ele2) > self.sentence_size:
ele_ele3 = re.sub(
'( ["’”」』]{0,2})([^ ])', r"\1\n\2", ele_ele2
)
ele2_id = ele2_ls.index(ele_ele2)
ele2_ls = (
ele2_ls[:ele2_id]
+ [i for i in ele_ele3.split("\n") if i]
+ ele2_ls[ele2_id + 1 :]
)
ele_id = ele1_ls.index(ele_ele1)
ele1_ls = (
ele1_ls[:ele_id]
+ [i for i in ele2_ls if i]
+ ele1_ls[ele_id + 1 :]
)
id = ls.index(ele)
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1 :]
return ls

View File

@ -1,36 +0,0 @@
from typing import Dict, List, Optional
from langchain.document_loaders import CSVLoader
from langchain.schema import Document
from pilot.source_embedding import SourceEmbedding, register
class CSVEmbedding(SourceEmbedding):
"""csv embedding for read csv document."""
def __init__(
self,
file_path,
vector_store_config,
embedding_args: Optional[Dict] = None,
):
"""Initialize with csv path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
self.embedding_args = embedding_args
@register
def read(self):
"""Load from csv path."""
loader = CSVLoader(file_path=self.file_path)
return loader.load()
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents

View File

@ -1,60 +0,0 @@
from typing import Optional
from chromadb.errors import NotEnoughElementsException
from langchain.embeddings import HuggingFaceEmbeddings
from pilot.configs.config import Config
from pilot.embedding_engine.knowledge_type import get_knowledge_embedding
from pilot.vector_store.connector import VectorStoreConnector
CFG = Config()
class KnowledgeEmbedding:
def __init__(
self,
model_name,
vector_store_config,
file_type: Optional[str] = "default",
file_path: Optional[str] = None,
):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.model_name = model_name
self.vector_store_config = vector_store_config
self.file_type = file_type
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_name)
self.vector_store_config["embeddings"] = self.embeddings
def knowledge_embedding(self):
self.knowledge_embedding_client = self.init_knowledge_embedding()
self.knowledge_embedding_client.source_embedding()
def knowledge_embedding_batch(self, docs):
# docs = self.knowledge_embedding_client.read_batch()
self.knowledge_embedding_client.index_to_store(docs)
def read(self):
self.knowledge_embedding_client = self.init_knowledge_embedding()
return self.knowledge_embedding_client.read_batch()
def init_knowledge_embedding(self):
return get_knowledge_embedding(
self.file_type.upper(), self.file_path, self.vector_store_config
)
def similar_search(self, text, topk):
vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
try:
ans = vector_client.similar_search(text, topk)
except NotEnoughElementsException:
ans = vector_client.similar_search(text, 1)
return ans
def vector_exist(self):
vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
return vector_client.vector_name_exists()

View File

@ -1,51 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
from typing import List
import markdown
from bs4 import BeautifulSoup
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter
from pilot.configs.config import Config
from pilot.source_embedding import SourceEmbedding, register
from pilot.source_embedding.EncodeTextLoader import EncodeTextLoader
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
CFG = Config()
class MarkdownEmbedding(SourceEmbedding):
"""markdown embedding for read markdown document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with markdown path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
# self.encoding = encoding
@register
def read(self):
"""Load from markdown path."""
loader = EncodeTextLoader(self.file_path)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(textsplitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
content = markdown.markdown(d.page_content)
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta", "i.fa"]):
tag.extract()
documents[i].page_content = soup.get_text()
documents[i].page_content = documents[i].page_content.replace("\n", " ")
i += 1
return documents

View File

@ -1,44 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from typing import List
from langchain.document_loaders import PyPDFLoader
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter
from pilot.configs.config import Config
from pilot.source_embedding import SourceEmbedding, register
CFG = Config()
class PDFEmbedding(SourceEmbedding):
"""pdf embedding for read pdf document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from pdf path."""
loader = PyPDFLoader(self.file_path)
# textsplitter = CHNDocumentSplitter(
# pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
# )
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=100,
)
return loader.load_and_split(textsplitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents

View File

@ -1,55 +0,0 @@
"""Loader that loads image files."""
import os
from typing import List
import fitz
from langchain.document_loaders.unstructured import UnstructuredFileLoader
from paddleocr import PaddleOCR
class UnstructuredPaddlePDFLoader(UnstructuredFileLoader):
"""Loader that uses unstructured to load image files, such as PNGs and JPGs."""
def _get_elements(self) -> List:
def pdf_ocr_txt(filepath, dir_path="tmp_files"):
full_dir_path = os.path.join(os.path.dirname(filepath), dir_path)
if not os.path.exists(full_dir_path):
os.makedirs(full_dir_path)
filename = os.path.split(filepath)[-1]
ocr = PaddleOCR(lang="ch", use_gpu=False, show_log=False)
doc = fitz.open(filepath)
txt_file_path = os.path.join(full_dir_path, "%s.txt" % (filename))
img_name = os.path.join(full_dir_path, ".tmp.png")
with open(txt_file_path, "w", encoding="utf-8") as fout:
for i in range(doc.page_count):
page = doc[i]
text = page.get_text("")
fout.write(text)
fout.write("\n")
img_list = page.get_images()
for img in img_list:
pix = fitz.Pixmap(doc, img[0])
pix.save(img_name)
result = ocr.ocr(img_name)
ocr_result = [i[1][0] for line in result for i in line]
fout.write("\n".join(ocr_result))
os.remove(img_name)
return txt_file_path
txt_file_path = pdf_ocr_txt(self.file_path)
from unstructured.partition.text import partition_text
return partition_text(filename=txt_file_path, **self.unstructured_kwargs)
if __name__ == "__main__":
filepath = os.path.join(
os.path.dirname(os.path.dirname(__file__)), "content", "samples", "test_py.pdf"
)
loader = UnstructuredPaddlePDFLoader(filepath, mode="elements")
docs = loader.load()
for doc in docs:
print(doc)

View File

@ -1,41 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from typing import List
from langchain.document_loaders import UnstructuredPowerPointLoader
from langchain.schema import Document
from langchain.text_splitter import SpacyTextSplitter
from pilot.configs.config import Config
from pilot.source_embedding import SourceEmbedding, register
CFG = Config()
class PPTEmbedding(SourceEmbedding):
"""ppt embedding for read ppt document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from ppt path."""
loader = UnstructuredPowerPointLoader(self.file_path)
textsplitter = SpacyTextSplitter(
pipeline="zh_core_web_sm",
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=200,
)
return loader.load_and_split(textsplitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents

View File

@ -1,61 +0,0 @@
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import Milvus
# from pymilvus import Collection,utility
# from pymilvus import connections, DataType, FieldSchema, CollectionSchema
#
# # milvus = connections.connect(
# # alias="default",
# # host='localhost',
# # port="19530"
# # )
# # collection = Collection("book")
#
#
# # Get an existing collection.
# # collection.load()
# #
# # search_params = {"metric_type": "L2", "params": {}, "offset": 5}
# #
# # results = collection.search(
# # data=[[0.1, 0.2]],
# # anns_field="book_intro",
# # param=search_params,
# # limit=10,
# # expr=None,
# # output_fields=['book_id'],
# # consistency_level="Strong"
# # )
# #
# # # get the IDs of all returned hits
# # results[0].ids
# #
# # # get the distances to the query vector from all returned hits
# # results[0].distances
# #
# # # get the value of an output field specified in the search request.
# # # vector fields are not supported yet.
# # hit = results[0][0]
# # hit.entity.get('title')
#
# # milvus = connections.connect(
# # alias="default",
# # host='localhost',
# # port="19530"
# # )
# from pilot.vector_store.milvus_store import MilvusStore
#
# data = ["aaa", "bbb"]
# model_name = "xx/all-MiniLM-L6-v2"
# embeddings = HuggingFaceEmbeddings(model_name=model_name)
#
# # text_embeddings = Text2Vectors()
# mivuls = MilvusStore(cfg={"url": "127.0.0.1", "port": "19530", "alias": "default", "table_name": "test_k"})
#
# mivuls.insert(["textc","tezt2"])
# print("success")
# ct
# # mivuls.from_texts(texts=data, embedding=embeddings)
# # docs,
# # embedding=embeddings,
# # connection_args={"host": "127.0.0.1", "port": "19530", "alias": "default"}
# # )

View File

@ -1,101 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Dict, List, Optional
from chromadb.errors import NotEnoughElementsException
from pilot.configs.config import Config
from pilot.vector_store.connector import VectorStoreConnector
registered_methods = []
CFG = Config()
def register(method):
registered_methods.append(method.__name__)
return method
class SourceEmbedding(ABC):
"""base class for read data source embedding pipeline.
include data read, data process, data split, data to vector, data index vector store
Implementations should implement the method
"""
def __init__(
self,
file_path,
vector_store_config,
embedding_args: Optional[Dict] = None,
):
"""Initialize with Loader url, model_name, vector_store_config"""
self.file_path = file_path
self.vector_store_config = vector_store_config
self.embedding_args = embedding_args
self.embeddings = vector_store_config["embeddings"]
@abstractmethod
@register
def read(self) -> List[ABC]:
"""read datasource into document objects."""
@register
def data_process(self, text):
"""pre process data."""
@register
def text_split(self, text):
"""text split chunk"""
pass
@register
def text_to_vector(self, docs):
"""transform vector"""
pass
@register
def index_to_store(self, docs):
"""index to vector store"""
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
self.vector_client.load_document(docs)
@register
def similar_search(self, doc, topk):
"""vector store similarity_search"""
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
try:
ans = self.vector_client.similar_search(doc, topk)
except NotEnoughElementsException:
ans = self.vector_client.similar_search(doc, 1)
return ans
def vector_name_exist(self):
self.vector_client = VectorStoreConnector(
CFG.VECTOR_STORE_TYPE, self.vector_store_config
)
return self.vector_client.vector_name_exists()
def source_embedding(self):
if "read" in registered_methods:
text = self.read()
if "data_process" in registered_methods:
text = self.data_process(text)
if "text_split" in registered_methods:
self.text_split(text)
if "text_to_vector" in registered_methods:
self.text_to_vector(text)
if "index_to_store" in registered_methods:
self.index_to_store(text)
def read_batch(self):
if "read" in registered_methods:
text = self.read()
if "data_process" in registered_methods:
text = self.data_process(text)
if "text_split" in registered_methods:
self.text_split(text)
return text

View File

@ -1,29 +0,0 @@
from typing import List
from langchain.schema import Document
from pilot import SourceEmbedding, register
class StringEmbedding(SourceEmbedding):
"""string embedding for read string document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with pdf path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from String path."""
metadata = {"source": "db_summary"}
return [Document(page_content=self.file_path, metadata=metadata)]
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents

View File

@ -1,49 +0,0 @@
from typing import List
from bs4 import BeautifulSoup
from langchain.document_loaders import WebBaseLoader
from langchain.schema import Document
from langchain.text_splitter import CharacterTextSplitter
from pilot.configs.config import Config
from pilot.configs.model_config import KNOWLEDGE_CHUNK_SPLIT_SIZE
from pilot.source_embedding import SourceEmbedding, register
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
CFG = Config()
class URLEmbedding(SourceEmbedding):
"""url embedding for read url document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with url path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from url path."""
loader = WebBaseLoader(web_path=self.file_path)
if CFG.LANGUAGE == "en":
text_splitter = CharacterTextSplitter(
chunk_size=CFG.KNOWLEDGE_CHUNK_SIZE,
chunk_overlap=20,
length_function=len,
)
else:
text_splitter = CHNDocumentSplitter(pdf=True, sentence_size=1000)
return loader.load_and_split(text_splitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
content = d.page_content.replace("\n", "")
soup = BeautifulSoup(content, "html.parser")
for tag in soup(["!doctype", "meta"]):
tag.extract()
documents[i].page_content = soup.get_text()
i += 1
return documents

View File

@ -1,39 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from typing import List
from langchain.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader
from langchain.schema import Document
from pilot.configs.config import Config
from pilot.source_embedding import SourceEmbedding, register
from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
CFG = Config()
class WordEmbedding(SourceEmbedding):
"""word embedding for read word document."""
def __init__(self, file_path, vector_store_config):
"""Initialize with word path."""
super().__init__(file_path, vector_store_config)
self.file_path = file_path
self.vector_store_config = vector_store_config
@register
def read(self):
"""Load from word path."""
loader = UnstructuredWordDocumentLoader(self.file_path)
textsplitter = CHNDocumentSplitter(
pdf=True, sentence_size=CFG.KNOWLEDGE_CHUNK_SIZE
)
return loader.load_and_split(textsplitter)
@register
def data_process(self, documents: List[Document]):
i = 0
for d in documents:
documents[i].page_content = d.page_content.replace("\n", "")
i += 1
return documents

View File

@ -3,12 +3,12 @@
import argparse
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from pilot.embedding_engine.knowledge_type import KnowledgeType
from pilot.openapi.knowledge.knowledge_service import KnowledgeService
from pilot.openapi.knowledge.request.knowledge_request import KnowledgeSpaceRequest
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
from pilot.configs.config import Config
from pilot.configs.model_config import (
@ -49,6 +49,7 @@ class LocalKnowledgeInit:
space = KnowledgeSpaceRequest
space.name = self.vector_store_config["vector_store_name"]
space.desc = "knowledge_init.py"
space.vector_type = CFG.VECTOR_STORE_TYPE
space.owner = "DB-GPT"
knowledge_space_service.create_knowledge_space(space)