fix confilict

This commit is contained in:
csunny
2023-05-12 20:12:47 +08:00
20 changed files with 757 additions and 78 deletions

121
pilot/model/compression.py Normal file
View File

@@ -0,0 +1,121 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import dataclasses
import torch
from torch import Tensor
import torch.nn as nn
from torch.nn import functional as F
@dataclasses.dataclass
class CompressionConfig:
"""Group-wise quantization."""
num_bits: int
group_size: int
group_dim: int
symmetric: bool
enabled: bool = True
default_compression_config = CompressionConfig(
num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True)
class CLinear(nn.Module):
"""Compressed Linear Layer."""
def __init__(self, weight, bias, device):
super().__init__()
self.weight = compress(weight.data.to(device), default_compression_config)
self.bias = bias
def forward(self, input: Tensor) -> Tensor:
weight = decompress(self.weight, default_compression_config)
return F.linear(input, weight, self.bias)
def compress_module(module, target_device):
for attr_str in dir(module):
target_attr = getattr(module, attr_str)
if type(target_attr) == torch.nn.Linear:
setattr(module, attr_str,
CLinear(target_attr.weight, target_attr.bias, target_device))
for name, child in module.named_children():
compress_module(child, target_device)
def compress(tensor, config):
"""Simulate group-wise quantization."""
if not config.enabled:
return tensor
group_size, num_bits, group_dim, symmetric = (
config.group_size, config.num_bits, config.group_dim, config.symmetric)
assert num_bits <= 8
original_shape = tensor.shape
num_groups = (original_shape[group_dim] + group_size - 1) // group_size
new_shape = (original_shape[:group_dim] + (num_groups, group_size) +
original_shape[group_dim+1:])
# Pad
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
if pad_len != 0:
pad_shape = original_shape[:group_dim] + (pad_len,) + original_shape[group_dim+1:]
tensor = torch.cat([
tensor,
torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)],
dim=group_dim)
data = tensor.view(new_shape)
# Quantize
if symmetric:
B = 2 ** (num_bits - 1) - 1
scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0]
data = data * scale
data = data.clamp_(-B, B).round_().to(torch.int8)
return data, scale, original_shape
else:
B = 2 ** num_bits - 1
mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0]
mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0]
scale = B / (mx - mn)
data = data - mn
data.mul_(scale)
data = data.clamp_(0, B).round_().to(torch.uint8)
return data, mn, scale, original_shape
def decompress(packed_data, config):
"""Simulate group-wise dequantization."""
if not config.enabled:
return packed_data
group_size, num_bits, group_dim, symmetric = (
config.group_size, config.num_bits, config.group_dim, config.symmetric)
# Dequantize
if symmetric:
data, scale, original_shape = packed_data
data = data / scale
else:
data, mn, scale, original_shape = packed_data
data = data / scale
data.add_(mn)
# Unpad
pad_len = (group_size - original_shape[group_dim] % group_size) % group_size
if pad_len:
padded_original_shape = (
original_shape[:group_dim] +
(original_shape[group_dim] + pad_len,) +
original_shape[group_dim+1:])
data = data.reshape(padded_original_shape)
indices = [slice(0, x) for x in original_shape]
return data[indices].contiguous()
else:
return data.view(original_shape)

View File

@@ -5,13 +5,13 @@ import torch
@torch.inference_mode()
def generate_stream(model, tokenizer, params, device,
context_len=2048, stream_interval=2):
context_len=4096, stream_interval=2):
"""Fork from fastchat: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/inference.py """
prompt = params["prompt"]
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
max_new_tokens = int(params.get("max_new_tokens", 2048))
stop_str = params.get("stop", None)
input_ids = tokenizer(prompt).input_ids

34
pilot/model/llm/base.py Normal file
View File

@@ -0,0 +1,34 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from dataclasses import dataclass, field
from typing import List, TypedDict
class Message(TypedDict):
"""Vicuna Message object containing a role and the message content """
role: str
content: str
@dataclass
class ModelInfo:
"""Struct for model information.
Would be lovely to eventually get this directly from APIs
"""
name: str
max_tokens: int
@dataclass
class LLMResponse:
"""Standard response struct for a response from a LLM model."""
model_info = ModelInfo
@dataclass
class ChatModelResponse(LLMResponse):
"""Standard response struct for a response from an LLM model."""
content: str = None

View File

@@ -0,0 +1,108 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import abc
import time
import functools
from typing import List, Optional
from pilot.model.llm.base import Message
from pilot.conversation import conv_templates, Conversation, conv_one_shot, auto_dbgpt_one_shot
from pilot.configs.config import Config
# TODO Rewrite this
def retry_stream_api(
num_retries: int = 10,
backoff_base: float = 2.0,
warn_user: bool = True
):
"""Retry an Vicuna Server call.
Args:
num_retries int: Number of retries. Defaults to 10.
backoff_base float: Base for exponential backoff. Defaults to 2.
warn_user bool: Whether to warn the user. Defaults to True.
"""
retry_limit_msg = f"Error: Reached rate limit, passing..."
backoff_msg = (f"Error: API Bad gateway. Waiting {{backoff}} seconds...")
def _wrapper(func):
@functools.wraps(func)
def _wrapped(*args, **kwargs):
user_warned = not warn_user
num_attempts = num_retries + 1 # +1 for the first attempt
for attempt in range(1, num_attempts + 1):
try:
return func(*args, **kwargs)
except Exception as e:
if (e.http_status != 502) or (attempt == num_attempts):
raise
backoff = backoff_base ** (attempt + 2)
time.sleep(backoff)
return _wrapped
return _wrapper
# Overly simple abstraction util we create something better
# simple retry mechanism when getting a rate error or a bad gateway
def create_chat_competion(
conv: Conversation,
model: Optional[str] = None,
temperature: float = None,
max_new_tokens: Optional[int] = None,
) -> str:
"""Create a chat completion using the Vicuna-13b
Args:
messages(List[Message]): The messages to send to the chat completion
model (str, optional): The model to use. Default to None.
temperature (float, optional): The temperature to use. Defaults to 0.7.
max_tokens (int, optional): The max tokens to use. Defaults to None.
Returns:
str: The response from the chat completion
"""
cfg = Config()
if temperature is None:
temperature = cfg.temperature
# TODO request vicuna model get response
# convert vicuna message to chat completion.
for plugin in cfg.plugins:
if plugin.can_handle_chat_completion():
pass
class ChatIO(abc.ABC):
@abc.abstractmethod
def prompt_for_input(self, role: str) -> str:
"""Prompt for input from a role."""
@abc.abstractmethod
def prompt_for_output(self, role: str) -> str:
"""Prompt for output from a role."""
@abc.abstractmethod
def stream_output(self, output_stream, skip_echo_len: int):
"""Stream output."""
class SimpleChatIO(ChatIO):
def prompt_for_input(self, role: str) -> str:
return input(f"{role}: ")
def prompt_for_output(self, role: str) -> str:
print(f"{role}: ", end="", flush=True)
def stream_output(self, output_stream, skip_echo_len: int):
pre = 0
for outputs in output_stream:
outputs = outputs[skip_echo_len:].strip()
now = len(outputs) - 1
if now > pre:
print(" ".join(outputs[pre:now]), end=" ", flush=True)
pre = now
print(" ".join(outputs[pre:]), flush=True)
return " ".join(outputs)

View File

@@ -2,15 +2,17 @@
# -*- coding: utf-8 -*-
import torch
from pilot.singleton import Singleton
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModel
)
from fastchat.serve.compression import compress_module
from pilot.model.compression import compress_module
class ModelLoader:
class ModelLoader(metaclass=Singleton):
"""Model loader is a class for model load
Args: model_path