mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-07 12:00:46 +00:00
feature:knowledge embedding support file path auto adapt
This commit is contained in:
@@ -19,36 +19,32 @@ CFG = Config()
|
||||
|
||||
class LocalKnowledgeInit:
|
||||
embeddings: object = None
|
||||
model_name = LLM_MODEL_CONFIG["text2vec"]
|
||||
top_k: int = VECTOR_SEARCH_TOP_K
|
||||
|
||||
def __init__(self, vector_store_config) -> None:
|
||||
self.vector_store_config = vector_store_config
|
||||
self.model_name = LLM_MODEL_CONFIG["text2vec"]
|
||||
|
||||
def knowledge_persist(self, file_path, append_mode):
|
||||
"""knowledge persist"""
|
||||
kv = KnowledgeEmbedding(
|
||||
file_path=file_path,
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
vector_store_config=self.vector_store_config,
|
||||
)
|
||||
vector_store = kv.knowledge_persist_initialization(append_mode)
|
||||
return vector_store
|
||||
for root, _, files in os.walk(file_path, topdown=False):
|
||||
for file in files:
|
||||
filename = os.path.join(root, file)
|
||||
# docs = self._load_file(filename)
|
||||
ke = KnowledgeEmbedding(
|
||||
file_path=filename,
|
||||
model_name=self.model_name,
|
||||
vector_store_config=self.vector_store_config,
|
||||
)
|
||||
client = ke.init_knowledge_embedding()
|
||||
client.source_embedding()
|
||||
|
||||
def query(self, q):
|
||||
"""Query similar doc from Vector"""
|
||||
vector_store = self.init_vector_store()
|
||||
docs = vector_store.similarity_search_with_score(q, k=self.top_k)
|
||||
for doc in docs:
|
||||
dc, s = doc
|
||||
yield s, dc
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--vector_name", type=str, default="default")
|
||||
parser.add_argument("--append", type=bool, default=False)
|
||||
parser.add_argument("--store_type", type=str, default="Chroma")
|
||||
args = parser.parse_args()
|
||||
vector_name = args.vector_name
|
||||
append_mode = args.append
|
||||
@@ -56,5 +52,5 @@ if __name__ == "__main__":
|
||||
vector_store_config = {"vector_store_name": vector_name}
|
||||
print(vector_store_config)
|
||||
kv = LocalKnowledgeInit(vector_store_config=vector_store_config)
|
||||
vector_store = kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
||||
kv.knowledge_persist(file_path=DATASETS_DIR, append_mode=append_mode)
|
||||
print("your knowledge embedding success...")
|
||||
|
Reference in New Issue
Block a user