From 76854aece26b17d2f98605723ab747e60bbeb1d7 Mon Sep 17 00:00:00 2001
From: yhjun1026 <460342015@qq.com>
Date: Fri, 20 Oct 2023 14:21:07 +0800
Subject: [PATCH] feat(ChatAgent): ChatAgent doucument
add ChatAgent doucument
---
pilot/scene/chat_db/auto_execute/chat.py | 13 ++---
pilot/scene/chat_db/auto_execute/prompt.py | 57 ++++++----------------
2 files changed, 18 insertions(+), 52 deletions(-)
diff --git a/pilot/scene/chat_db/auto_execute/chat.py b/pilot/scene/chat_db/auto_execute/chat.py
index 01e04be63..f92df7a3a 100644
--- a/pilot/scene/chat_db/auto_execute/chat.py
+++ b/pilot/scene/chat_db/auto_execute/chat.py
@@ -5,7 +5,6 @@ from pilot.scene.base import ChatScene
from pilot.common.sql_database import Database
from pilot.configs.config import Config
from pilot.scene.chat_db.auto_execute.prompt import prompt
-from pilot.base_modules.agent.commands.command_mange import ApiCall
CFG = Config()
@@ -38,7 +37,6 @@ class ChatWithDbAutoExecute(BaseChat):
self.database = CFG.LOCAL_DB_MANAGE.get_connect(self.db_name)
self.top_k: int = 200
- self.api_call = ApiCall(display_registry=CFG.command_disply)
def generate_input_values(self):
"""
@@ -71,11 +69,6 @@ class ChatWithDbAutoExecute(BaseChat):
}
return input_values
- def stream_plugin_call(self, text):
- text = text.replace("\n", " ")
- print(f"stream_plugin_call:{text}")
- return self.api_call.run_display_sql(text, self.database.run_to_df)
- #
- # def do_action(self, prompt_response):
- # print(f"do_action:{prompt_response}")
- # return self.database.run(prompt_response.sql)
+ def do_action(self, prompt_response):
+ print(f"do_action:{prompt_response}")
+ return self.database.run(prompt_response.sql)
diff --git a/pilot/scene/chat_db/auto_execute/prompt.py b/pilot/scene/chat_db/auto_execute/prompt.py
index d9b67af39..abc889cec 100644
--- a/pilot/scene/chat_db/auto_execute/prompt.py
+++ b/pilot/scene/chat_db/auto_execute/prompt.py
@@ -8,51 +8,24 @@ from pilot.scene.chat_db.auto_execute.example import sql_data_example
CFG = Config()
+PROMPT_SCENE_DEFINE = "You are a SQL expert. "
-_PROMPT_SCENE_DEFINE_EN = "You are a database expert. "
-_PROMPT_SCENE_DEFINE_ZH = "你是一个数据库专家. "
-
-_DEFAULT_TEMPLATE_EN = """
+_DEFAULT_TEMPLATE = """
Given an input question, create a syntactically correct {dialect} sql.
-Table structure information:
- {table_info}
-Constraint:
-1. You can only use the table provided in the table structure information to generate sql. If you cannot generate sql based on the provided table structure, please say: "The table structure information provided is not enough to generate sql query." It is prohibited to fabricate information at will.
-2. Do not query columns that do not exist. Pay attention to which column is in which table.
-3. Replace the corresponding sql into the sql field in the returned result
-4. Unless the user specifies in the question a specific number of examples he wishes to obtain, always limit the query to a maximum of {top_k} results.
-5. Please output the Sql content in the following format to execute the corresponding SQL to display the data:response_tableSQL Query to run
-Please make sure to respond as following format:
- thoughts summary to say to user.response_tableSQL Query to run
-
+
+Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results.
+Use as few tables as possible when querying.
+Only use the following tables schema to generate sql:
+{table_info}
+Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
+
Question: {input}
+
+Respond in JSON format as following format:
+{response}
+Ensure the response is correct json and can be parsed by Python json.loads
"""
-_DEFAULT_TEMPLATE_ZH = """
-给定一个输入问题,创建一个语法正确的 {dialect} sql。
-已知表结构信息:
- {table_info}
-
-约束:
-1. 只能使用表结构信息中提供的表来生成 sql,如果无法根据提供的表结构中生成 sql ,请说:“提供的表结构信息不足以生成 sql 查询。” 禁止随意捏造信息。
-2. 不要查询不存在的列,注意哪一列位于哪张表中。
-3.将对应的sql替换到返回结果中的sql字段中
-4.除非用户在问题中指定了他希望获得的具体示例数量,否则始终将查询限制为最多 {top_k} 个结果。
-
-请务必按照以下格式回复:
- 对用户说的想法摘要。response_table要运行的 SQL
-
-问题:{input}
-"""
-
-_DEFAULT_TEMPLATE = (
- _DEFAULT_TEMPLATE_EN if CFG.LANGUAGE == "en" else _DEFAULT_TEMPLATE_ZH
-)
-
-PROMPT_SCENE_DEFINE = (
- _PROMPT_SCENE_DEFINE_EN if CFG.LANGUAGE == "en" else _PROMPT_SCENE_DEFINE_ZH
-)
-
RESPONSE_FORMAT_SIMPLE = {
"thoughts": "thoughts summary to say to user",
"sql": "SQL Query to run",
@@ -60,7 +33,7 @@ RESPONSE_FORMAT_SIMPLE = {
PROMPT_SEP = SeparatorStyle.SINGLE.value
-PROMPT_NEED_NEED_STREAM_OUT = True
+PROMPT_NEED_NEED_STREAM_OUT = False
# Temperature is a configuration hyperparameter that controls the randomness of language model output.
# A high temperature produces more unpredictable and creative results, while a low temperature produces more common and conservative output.
@@ -70,7 +43,7 @@ PROMPT_TEMPERATURE = 0.5
prompt = PromptTemplate(
template_scene=ChatScene.ChatWithDbExecute.value(),
input_variables=["input", "table_info", "dialect", "top_k", "response"],
- # response_format=json.dumps(RESPONSE_FORMAT_SIMPLE, ensure_ascii=False, indent=4),
+ response_format=json.dumps(RESPONSE_FORMAT_SIMPLE, ensure_ascii=False, indent=4),
template_define=PROMPT_SCENE_DEFINE,
template=_DEFAULT_TEMPLATE,
stream_out=PROMPT_NEED_NEED_STREAM_OUT,