diff --git a/pilot/configs/config.py b/pilot/configs/config.py index 9b915275a..594b8b4ae 100644 --- a/pilot/configs/config.py +++ b/pilot/configs/config.py @@ -152,7 +152,6 @@ class Config(metaclass=Singleton): self.WEAVIATE_URL = os.getenv("WEAVIATE_URL", "http://127.0.0.1:8080") - # QLoRA self.QLoRA = os.getenv("QUANTIZE_QLORA", "True") diff --git a/pilot/vector_store/weaviate_store.py b/pilot/vector_store/weaviate_store.py index 2dc4d2f1f..fc5455672 100644 --- a/pilot/vector_store/weaviate_store.py +++ b/pilot/vector_store/weaviate_store.py @@ -45,18 +45,21 @@ class WeaviateStore(VectorStoreBase): # } # vector = self.embedding.embed_query(text) response = ( - self.vector_store_client.query.get(self.vector_name, ["metadata", "page_content"]) + self.vector_store_client.query.get( + self.vector_name, ["metadata", "page_content"] + ) # .with_near_vector({"vector": vector}) - .with_limit(topk) - .do() + .with_limit(topk).do() ) - res = response['data']['Get'][list(response['data']['Get'].keys())[0]] + res = response["data"]["Get"][list(response["data"]["Get"].keys())[0]] docs = [] for r in res: - docs.append(Document( - page_content=r['page_content'], - metadata={"metadata": r['metadata']}, - )) + docs.append( + Document( + page_content=r["page_content"], + metadata={"metadata": r["metadata"]}, + ) + ) return docs def vector_name_exists(self) -> bool: @@ -110,7 +113,7 @@ class WeaviateStore(VectorStoreBase): # }, "description": "Text content of the document", "name": "page_content", - } + }, ], # "vectorizer": "text2vec-transformers", } @@ -132,7 +135,12 @@ class WeaviateStore(VectorStoreBase): # Batch import all documents for i in range(len(texts)): - properties = {"metadata": metadatas[i]['source'], "page_content": texts[i]} + properties = { + "metadata": metadatas[i]["source"], + "page_content": texts[i], + } - self.vector_store_client.batch.add_data_object(data_object=properties, class_name=self.vector_name) + self.vector_store_client.batch.add_data_object( + data_object=properties, class_name=self.vector_name + ) self.vector_store_client.batch.flush()