diff --git a/pilot/configs/config.py b/pilot/configs/config.py index 1c8026df5..ee407e6a2 100644 --- a/pilot/configs/config.py +++ b/pilot/configs/config.py @@ -28,7 +28,7 @@ class Config(metaclass=Singleton): self.skip_reprompt = False self.temperature = float(os.getenv("TEMPERATURE", 0.7)) - self.NUM_GPUS = int(os.getenv("NUM_GPUS",1)) + self.NUM_GPUS = int(os.getenv("NUM_GPUS", 1)) self.execute_local_commands = ( os.getenv("EXECUTE_LOCAL_COMMANDS", "False") == "True" diff --git a/pilot/model/adapter.py b/pilot/model/adapter.py index 16179af6b..2d420c02f 100644 --- a/pilot/model/adapter.py +++ b/pilot/model/adapter.py @@ -73,6 +73,7 @@ class VicunaLLMAdapater(BaseLLMAdaper): ) return model, tokenizer + def auto_configure_device_map(num_gpus): """handling multi gpu calls""" # transformer.word_embeddings occupying 1 floors @@ -81,18 +82,18 @@ def auto_configure_device_map(num_gpus): # Allocate a total of 30 layers to number On gpus cards num_trans_layers = 28 per_gpu_layers = 30 / num_gpus - #Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError - #Under Windows, model. device will be set to transformer. word_ Embeddings. device - #Under Linux, model. device will be set to lm_ Head.device - #When calling chat or stream_ During chat, input_ IDS will be placed on model. device - #If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError - #Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card + # Bugfix: call torch.embedding in Linux and the incoming weight and input are not on the same device, resulting in a RuntimeError + # Under Windows, model. device will be set to transformer. word_ Embeddings. device + # Under Linux, model. device will be set to lm_ Head.device + # When calling chat or stream_ During chat, input_ IDS will be placed on model. device + # If transformer. word_ If embeddings. device and model. device are different, it will cause a RuntimeError + # Therefore, here we will transform. word_ Embeddings, transformer. final_ Layernorm, lm_ Put all the heads on the first card device_map = { - 'transformer.embedding.word_embeddings': 0, - 'transformer.encoder.final_layernorm': 0, - 'transformer.output_layer': 0, - 'transformer.rotary_pos_emb': 0, - 'lm_head': 0 + "transformer.embedding.word_embeddings": 0, + "transformer.encoder.final_layernorm": 0, + "transformer.output_layer": 0, + "transformer.rotary_pos_emb": 0, + "lm_head": 0, } used = 2 @@ -102,7 +103,7 @@ def auto_configure_device_map(num_gpus): gpu_target += 1 used = 0 assert gpu_target < num_gpus - device_map[f'transformer.encoder.layers.{i}'] = gpu_target + device_map[f"transformer.encoder.layers.{i}"] = gpu_target used += 1 return device_map @@ -114,7 +115,13 @@ class ChatGLMAdapater(BaseLLMAdaper): def match(self, model_path: str): return "chatglm" in model_path - def loader(self, model_path: str, from_pretrained_kwargs: dict, device_map=None, num_gpus=CFG.NUM_GPUS): + def loader( + self, + model_path: str, + from_pretrained_kwargs: dict, + device_map=None, + num_gpus=CFG.NUM_GPUS, + ): tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) if DEVICE != "cuda": @@ -125,10 +132,8 @@ class ChatGLMAdapater(BaseLLMAdaper): else: model = ( AutoModel.from_pretrained( - model_path, trust_remote_code=True, - **from_pretrained_kwargs - ) - .half() + model_path, trust_remote_code=True, **from_pretrained_kwargs + ).half() # .cuda() ) from accelerate import dispatch_model diff --git a/pilot/model/llm_out/chatglm_llm.py b/pilot/model/llm_out/chatglm_llm.py index 1c341e08f..9bfcac915 100644 --- a/pilot/model/llm_out/chatglm_llm.py +++ b/pilot/model/llm_out/chatglm_llm.py @@ -1,5 +1,8 @@ #!/usr/bin/env python3 # -*- coding:utf-8 -*- + +from typing import List +import re import copy import torch @@ -33,34 +36,36 @@ def chatglm_generate_stream( messages = prompt.split(stop) # # # Add history conversation - hist = [] - once_conversation = [] + hist = [HistoryEntry()] + system_messages = [] for message in messages[:-2]: if len(message) <= 0: continue - if "human:" in message: - once_conversation.append(message.split("human:")[1]) - # elif "system:" in message: - # once_conversation.append(f"""###system:{message.split("system:")[1]} """) + hist[-1].add_question(message.split("human:")[1]) + elif "system:" in message: + msg = message.split("system:")[1] + hist[-1].add_question(msg) + system_messages.append(msg) elif "ai:" in message: - once_conversation.append(message.split("ai:")[1]) - last_conversation = copy.deepcopy(once_conversation) - hist.append(last_conversation) - once_conversation = [] - # else: - # once_conversation.append(f"""###system:{message} """) + hist[-1].add_answer(message.split("ai:")[1]) + hist.append(HistoryEntry()) + else: + # TODO + # hist[-1].add_question(message.split("system:")[1]) + # once_conversation.append(f"""###system:{message} """) + pass try: query = messages[-2].split("human:")[1] except IndexError: - # fix doc qa: https://github.com/csunny/DB-GPT/issues/274 - doc_qa_message = messages[-2] - if "system:" in doc_qa_message: - query = doc_qa_message.split("system:")[1] - else: - query = messages[-3].split("human:")[1] + query = messages[-3].split("human:")[1] + hist = build_history(hist) + if not hist: + # No history conversation, but has system messages, merge to user`s query + query = prompt_adaptation(system_messages, query) print("Query Message: ", query) + print("hist: ", hist) # output = "" # i = 0 @@ -75,3 +80,43 @@ def chatglm_generate_stream( yield output yield output + + +class HistoryEntry: + def __init__(self, question: str = "", answer: str = ""): + self.question = question + self.answer = answer + + def add_question(self, question: str): + self.question += question + + def add_answer(self, answer: str): + self.answer += answer + + def to_list(self): + if self.question == "" or self.answer == "": + return None + return [self.question, self.answer] + + +def build_history(hist: List[HistoryEntry]) -> List[List[str]]: + return list(filter(lambda hl: hl is not None, map(lambda h: h.to_list(), hist))) + + +def prompt_adaptation(system_messages: List[str], human_message: str) -> str: + if not system_messages: + return human_message + system_messages_str = " ".join(system_messages) + adaptation_rules = [ + r"Question:\s*{}\s*", # chat_db scene + r"Goals:\s*{}\s*", # chat_execution + r"问题:\s*{}\s*", # chat_knowledge zh + r"question:\s*{}\s*", # chat_knowledge en + ] + # system message has include human question + for rule in adaptation_rules: + pattern = re.compile(rule.format(re.escape(human_message))) + if re.search(pattern, system_messages_str): + return system_messages_str + # https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926 + return f"{system_messages_str}\n\n问:{human_message}\n\n答:"