mirror of
https://github.com/csunny/DB-GPT.git
synced 2025-09-12 12:37:14 +00:00
Merge branch 'dev' into llm_fxp
This commit is contained in:
@@ -55,54 +55,6 @@ def fix_and_parse_json(
|
||||
logger.error("参数解析错误", e)
|
||||
|
||||
|
||||
def fix_json_using_multiple_techniques(assistant_reply: str) -> Dict[Any, Any]:
|
||||
"""Fix the given JSON string to make it parseable and fully compliant with two techniques.
|
||||
|
||||
Args:
|
||||
json_string (str): The JSON string to fix.
|
||||
|
||||
Returns:
|
||||
str: The fixed JSON string.
|
||||
"""
|
||||
assistant_reply = assistant_reply.strip()
|
||||
if assistant_reply.startswith("```json"):
|
||||
assistant_reply = assistant_reply[7:]
|
||||
if assistant_reply.endswith("```"):
|
||||
assistant_reply = assistant_reply[:-3]
|
||||
try:
|
||||
return json.loads(assistant_reply) # just check the validity
|
||||
except json.JSONDecodeError as e: # noqa: E722
|
||||
print(f"JSONDecodeError: {e}")
|
||||
pass
|
||||
|
||||
if assistant_reply.startswith("json "):
|
||||
assistant_reply = assistant_reply[5:]
|
||||
assistant_reply = assistant_reply.strip()
|
||||
try:
|
||||
return json.loads(assistant_reply) # just check the validity
|
||||
except json.JSONDecodeError: # noqa: E722
|
||||
pass
|
||||
|
||||
# Parse and print Assistant response
|
||||
assistant_reply_json = fix_and_parse_json(assistant_reply)
|
||||
logger.debug("Assistant reply JSON: %s", str(assistant_reply_json))
|
||||
if assistant_reply_json == {}:
|
||||
assistant_reply_json = attempt_to_fix_json_by_finding_outermost_brackets(
|
||||
assistant_reply
|
||||
)
|
||||
|
||||
logger.debug("Assistant reply JSON 2: %s", str(assistant_reply_json))
|
||||
if assistant_reply_json != {}:
|
||||
return assistant_reply_json
|
||||
|
||||
logger.error(
|
||||
"Error: The following AI output couldn't be converted to a JSON:\n",
|
||||
assistant_reply,
|
||||
)
|
||||
if CFG.speak_mode:
|
||||
say_text("I have received an invalid JSON response from the OpenAI API.")
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def correct_json(json_to_load: str) -> str:
|
||||
|
@@ -4,10 +4,9 @@
|
||||
import json
|
||||
from typing import Dict
|
||||
|
||||
from pilot.agent.json_fix_llm import fix_json_using_multiple_techniques
|
||||
from pilot.commands.exception_not_commands import NotCommands
|
||||
from pilot.configs.config import Config
|
||||
from pilot.prompts.generator import PromptGenerator
|
||||
from pilot.prompts.generator import PluginPromptGenerator
|
||||
from pilot.speech import say_text
|
||||
|
||||
|
||||
@@ -24,8 +23,8 @@ def _resolve_pathlike_command_args(command_args):
|
||||
|
||||
|
||||
def execute_ai_response_json(
|
||||
prompt: PromptGenerator,
|
||||
ai_response: str,
|
||||
prompt: PluginPromptGenerator,
|
||||
ai_response,
|
||||
user_input: str = None,
|
||||
) -> str:
|
||||
"""
|
||||
@@ -39,11 +38,8 @@ def execute_ai_response_json(
|
||||
|
||||
"""
|
||||
cfg = Config()
|
||||
try:
|
||||
assistant_reply_json = fix_json_using_multiple_techniques(ai_response)
|
||||
except (json.JSONDecodeError, ValueError, AttributeError) as e:
|
||||
raise NotCommands("非可执行命令结构")
|
||||
command_name, arguments = get_command(assistant_reply_json)
|
||||
|
||||
command_name, arguments = get_command(ai_response)
|
||||
|
||||
if cfg.speak_mode:
|
||||
say_text(f"I want to execute {command_name}")
|
||||
@@ -71,7 +67,7 @@ def execute_ai_response_json(
|
||||
def execute_command(
|
||||
command_name: str,
|
||||
arguments,
|
||||
prompt: PromptGenerator,
|
||||
prompt: PluginPromptGenerator,
|
||||
):
|
||||
"""Execute the command and return the result
|
||||
|
||||
|
@@ -1,29 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.prompts.generator import PromptGenerator
|
||||
from pilot.prompts.prompt import build_default_prompt_generator
|
||||
|
||||
|
||||
class CommandsLoad:
|
||||
"""
|
||||
Load Plugins Commands Info , help build system prompt!
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.command_registry = None
|
||||
|
||||
def getCommandInfos(
|
||||
self, prompt_generator: Optional[PromptGenerator] = None
|
||||
) -> str:
|
||||
cfg = Config()
|
||||
if prompt_generator is None:
|
||||
prompt_generator = build_default_prompt_generator()
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
prompt_generator = plugin.post_prompt(prompt_generator)
|
||||
self.prompt_generator = prompt_generator
|
||||
command_infos = ""
|
||||
command_infos += f"\n\n{prompt_generator.commands()}"
|
||||
return command_infos
|
@@ -277,6 +277,7 @@ class Database:
|
||||
|
||||
def run(self, session, command: str, fetch: str = "all") -> List:
|
||||
"""Execute a SQL command and return a string representing the results."""
|
||||
print("sql run:" + command)
|
||||
cursor = session.execute(text(command))
|
||||
if cursor.returns_rows:
|
||||
if fetch == "all":
|
||||
|
@@ -1,167 +0,0 @@
|
||||
# sourcery skip: do-not-use-staticmethod
|
||||
"""
|
||||
A module that contains the AIConfig class object that contains the configuration
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import platform
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import distro
|
||||
import yaml
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.prompts.generator import PromptGenerator
|
||||
from pilot.prompts.prompt import build_default_prompt_generator
|
||||
|
||||
# Soon this will go in a folder where it remembers more stuff about the run(s)
|
||||
SAVE_FILE = str(Path(os.getcwd()) / "ai_settings.yaml")
|
||||
|
||||
|
||||
class AIConfig:
|
||||
"""
|
||||
A class object that contains the configuration information for the AI
|
||||
|
||||
Attributes:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
api_budget (float): The maximum dollar value for API calls (0.0 means infinite)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_name: str = "",
|
||||
ai_role: str = "",
|
||||
ai_goals: list | None = None,
|
||||
api_budget: float = 0.0,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize a class instance
|
||||
|
||||
Parameters:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
api_budget (float): The maximum dollar value for API calls (0.0 means infinite)
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if ai_goals is None:
|
||||
ai_goals = []
|
||||
self.ai_name = ai_name
|
||||
self.ai_role = ai_role
|
||||
self.ai_goals = ai_goals
|
||||
self.api_budget = api_budget
|
||||
self.prompt_generator = None
|
||||
self.command_registry = None
|
||||
|
||||
@staticmethod
|
||||
def load(config_file: str = SAVE_FILE) -> "AIConfig":
|
||||
"""
|
||||
Returns class object with parameters (ai_name, ai_role, ai_goals, api_budget) loaded from
|
||||
yaml file if yaml file exists,
|
||||
else returns class with no parameters.
|
||||
|
||||
Parameters:
|
||||
config_file (int): The path to the config yaml file.
|
||||
DEFAULT: "../ai_settings.yaml"
|
||||
|
||||
Returns:
|
||||
cls (object): An instance of given cls object
|
||||
"""
|
||||
|
||||
try:
|
||||
with open(config_file, encoding="utf-8") as file:
|
||||
config_params = yaml.load(file, Loader=yaml.FullLoader)
|
||||
except FileNotFoundError:
|
||||
config_params = {}
|
||||
|
||||
ai_name = config_params.get("ai_name", "")
|
||||
ai_role = config_params.get("ai_role", "")
|
||||
ai_goals = [
|
||||
str(goal).strip("{}").replace("'", "").replace('"', "")
|
||||
if isinstance(goal, dict)
|
||||
else str(goal)
|
||||
for goal in config_params.get("ai_goals", [])
|
||||
]
|
||||
api_budget = config_params.get("api_budget", 0.0)
|
||||
# type is Type[AIConfig]
|
||||
return AIConfig(ai_name, ai_role, ai_goals, api_budget)
|
||||
|
||||
def save(self, config_file: str = SAVE_FILE) -> None:
|
||||
"""
|
||||
Saves the class parameters to the specified file yaml file path as a yaml file.
|
||||
|
||||
Parameters:
|
||||
config_file(str): The path to the config yaml file.
|
||||
DEFAULT: "../ai_settings.yaml"
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
config = {
|
||||
"ai_name": self.ai_name,
|
||||
"ai_role": self.ai_role,
|
||||
"ai_goals": self.ai_goals,
|
||||
"api_budget": self.api_budget,
|
||||
}
|
||||
with open(config_file, "w", encoding="utf-8") as file:
|
||||
yaml.dump(config, file, allow_unicode=True)
|
||||
|
||||
def construct_full_prompt(
|
||||
self, prompt_generator: Optional[PromptGenerator] = None
|
||||
) -> str:
|
||||
"""
|
||||
Returns a prompt to the user with the class information in an organized fashion.
|
||||
|
||||
Parameters:
|
||||
None
|
||||
|
||||
Returns:
|
||||
full_prompt (str): A string containing the initial prompt for the user
|
||||
including the ai_name, ai_role, ai_goals, and api_budget.
|
||||
"""
|
||||
|
||||
prompt_start = (
|
||||
"Your decisions must always be made independently without"
|
||||
" seeking user assistance. Play to your strengths as an LLM and pursue"
|
||||
" simple strategies with no legal complications."
|
||||
""
|
||||
)
|
||||
|
||||
cfg = Config()
|
||||
if prompt_generator is None:
|
||||
prompt_generator = build_default_prompt_generator()
|
||||
prompt_generator.goals = self.ai_goals
|
||||
prompt_generator.name = self.ai_name
|
||||
prompt_generator.role = self.ai_role
|
||||
prompt_generator.command_registry = self.command_registry
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
prompt_generator = plugin.post_prompt(prompt_generator)
|
||||
|
||||
if cfg.execute_local_commands:
|
||||
# add OS info to prompt
|
||||
os_name = platform.system()
|
||||
os_info = (
|
||||
platform.platform(terse=True)
|
||||
if os_name != "Linux"
|
||||
else distro.name(pretty=True)
|
||||
)
|
||||
|
||||
prompt_start += f"\nThe OS you are running on is: {os_info}"
|
||||
|
||||
# Construct full prompt
|
||||
full_prompt = f"You are {prompt_generator.name}, {prompt_generator.role}\n{prompt_start}\n\nGOALS:\n\n"
|
||||
for i, goal in enumerate(self.ai_goals):
|
||||
full_prompt += f"{i+1}. {goal}\n"
|
||||
if self.api_budget > 0.0:
|
||||
full_prompt += f"\nIt takes money to let you run. Your API budget is ${self.api_budget:.3f}"
|
||||
self.prompt_generator = prompt_generator
|
||||
full_prompt += f"\n\n{prompt_generator.generate_prompt_string()}"
|
||||
return full_prompt
|
@@ -2,7 +2,34 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
"""We need to design a base class. That other connector can Write with this"""
|
||||
from abc import ABC, abstractmethod
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
from typing import Any, Iterable, List, Optional
|
||||
|
||||
|
||||
class BaseConnection:
|
||||
pass
|
||||
class BaseConnect(BaseModel, ABC):
|
||||
type
|
||||
driver: str
|
||||
|
||||
|
||||
def get_session(self, db_name: str):
|
||||
pass
|
||||
|
||||
|
||||
def get_table_names(self) -> Iterable[str]:
|
||||
pass
|
||||
|
||||
def get_table_info(self, table_names: Optional[List[str]] = None) -> str:
|
||||
pass
|
||||
|
||||
def get_table_info(self, table_names: Optional[List[str]] = None) -> str:
|
||||
pass
|
||||
|
||||
def get_index_info(self, table_names: Optional[List[str]] = None) -> str:
|
||||
pass
|
||||
|
||||
def get_database_list(self):
|
||||
pass
|
||||
|
||||
def run(self, session, command: str, fetch: str = "all") -> List:
|
||||
pass
|
@@ -1,64 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import pymysql
|
||||
|
||||
|
||||
class MySQLOperator:
|
||||
"""Connect MySQL Database fetch MetaData For LLM Prompt
|
||||
Args:
|
||||
|
||||
Usage:
|
||||
"""
|
||||
|
||||
default_db = ["information_schema", "performance_schema", "sys", "mysql"]
|
||||
|
||||
def __init__(self, user, password, host="localhost", port=3306) -> None:
|
||||
self.conn = pymysql.connect(
|
||||
host=host,
|
||||
user=user,
|
||||
port=port,
|
||||
passwd=password,
|
||||
charset="utf8mb4",
|
||||
cursorclass=pymysql.cursors.DictCursor,
|
||||
)
|
||||
|
||||
def get_schema(self, schema_name):
|
||||
with self.conn.cursor() as cursor:
|
||||
_sql = f"""
|
||||
select concat(table_name, "(" , group_concat(column_name), ")") as schema_info from information_schema.COLUMNS where table_schema="{schema_name}" group by TABLE_NAME;
|
||||
"""
|
||||
cursor.execute(_sql)
|
||||
results = cursor.fetchall()
|
||||
return results
|
||||
|
||||
def run_sql(self, db_name: str, sql: str, fetch: str = "all"):
|
||||
with self.conn.cursor() as cursor:
|
||||
cursor.execute("USE " + db_name)
|
||||
cursor.execute(sql)
|
||||
if fetch == "all":
|
||||
result = cursor.fetchall()
|
||||
elif fetch == "one":
|
||||
result = cursor.fetchone()[0] # type: ignore
|
||||
else:
|
||||
raise ValueError("Fetch parameter must be either 'one' or 'all'")
|
||||
return str(result)
|
||||
|
||||
def get_index(self, schema_name):
|
||||
pass
|
||||
|
||||
def get_db_list(self):
|
||||
with self.conn.cursor() as cursor:
|
||||
_sql = """
|
||||
show databases;
|
||||
"""
|
||||
cursor.execute(_sql)
|
||||
results = cursor.fetchall()
|
||||
|
||||
dbs = [
|
||||
d["Database"] for d in results if d["Database"] not in self.default_db
|
||||
]
|
||||
return dbs
|
||||
|
||||
def get_meta(self, schema_name):
|
||||
pass
|
0
pilot/connections/nosql/__init__.py
Normal file
0
pilot/connections/nosql/__init__.py
Normal file
0
pilot/connections/rdbms/__init__.py
Normal file
0
pilot/connections/rdbms/__init__.py
Normal file
18
pilot/connections/rdbms/mysql.py
Normal file
18
pilot/connections/rdbms/mysql.py
Normal file
@@ -0,0 +1,18 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import pymysql
|
||||
from pilot.connections.rdbms.rdbms_connect import RDBMSDatabase
|
||||
|
||||
|
||||
class MySQLConnect(RDBMSDatabase):
|
||||
"""Connect MySQL Database fetch MetaData For LLM Prompt
|
||||
Args:
|
||||
Usage:
|
||||
"""
|
||||
|
||||
type:str = "MySQL"
|
||||
connect_url = "mysql+pymysql://"
|
||||
|
||||
default_db = ["information_schema", "performance_schema", "sys", "mysql"]
|
||||
|
318
pilot/connections/rdbms/rdbms_connect.py
Normal file
318
pilot/connections/rdbms/rdbms_connect.py
Normal file
@@ -0,0 +1,318 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import warnings
|
||||
from typing import Any, Iterable, List, Optional
|
||||
from pydantic import BaseModel, Field, root_validator, validator, Extra
|
||||
from abc import ABC, abstractmethod
|
||||
import sqlalchemy
|
||||
from sqlalchemy import (
|
||||
MetaData,
|
||||
Table,
|
||||
create_engine,
|
||||
inspect,
|
||||
select,
|
||||
text,
|
||||
)
|
||||
from sqlalchemy.engine import CursorResult, Engine
|
||||
from sqlalchemy.exc import ProgrammingError, SQLAlchemyError
|
||||
from sqlalchemy.schema import CreateTable
|
||||
from sqlalchemy.orm import sessionmaker, scoped_session
|
||||
|
||||
from pilot.connections.base import BaseConnect
|
||||
|
||||
|
||||
def _format_index(index: sqlalchemy.engine.interfaces.ReflectedIndex) -> str:
|
||||
return (
|
||||
f'Name: {index["name"]}, Unique: {index["unique"]},'
|
||||
f' Columns: {str(index["column_names"])}'
|
||||
)
|
||||
|
||||
|
||||
class RDBMSDatabase(BaseConnect):
|
||||
"""SQLAlchemy wrapper around a database."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
engine,
|
||||
schema: Optional[str] = None,
|
||||
metadata: Optional[MetaData] = None,
|
||||
ignore_tables: Optional[List[str]] = None,
|
||||
include_tables: Optional[List[str]] = None,
|
||||
sample_rows_in_table_info: int = 3,
|
||||
indexes_in_table_info: bool = False,
|
||||
custom_table_info: Optional[dict] = None,
|
||||
view_support: bool = False,
|
||||
):
|
||||
"""Create engine from database URI."""
|
||||
self._engine = engine
|
||||
self._schema = schema
|
||||
if include_tables and ignore_tables:
|
||||
raise ValueError("Cannot specify both include_tables and ignore_tables")
|
||||
|
||||
self._inspector = inspect(self._engine)
|
||||
session_factory = sessionmaker(bind=engine)
|
||||
Session = scoped_session(session_factory)
|
||||
|
||||
self._db_sessions = Session
|
||||
|
||||
self._all_tables = set()
|
||||
self.view_support = False
|
||||
self._usable_tables = set()
|
||||
self._include_tables = set()
|
||||
self._ignore_tables = set()
|
||||
self._custom_table_info = set()
|
||||
self._indexes_in_table_info = set()
|
||||
self._usable_tables = set()
|
||||
self._usable_tables = set()
|
||||
self._sample_rows_in_table_info = set()
|
||||
# including view support by adding the views as well as tables to the all
|
||||
# tables list if view_support is True
|
||||
# self._all_tables = set(
|
||||
# self._inspector.get_table_names(schema=schema)
|
||||
# + (self._inspector.get_view_names(schema=schema) if view_support else [])
|
||||
# )
|
||||
|
||||
# self._include_tables = set(include_tables) if include_tables else set()
|
||||
# if self._include_tables:
|
||||
# missing_tables = self._include_tables - self._all_tables
|
||||
# if missing_tables:
|
||||
# raise ValueError(
|
||||
# f"include_tables {missing_tables} not found in database"
|
||||
# )
|
||||
# self._ignore_tables = set(ignore_tables) if ignore_tables else set()
|
||||
# if self._ignore_tables:
|
||||
# missing_tables = self._ignore_tables - self._all_tables
|
||||
# if missing_tables:
|
||||
# raise ValueError(
|
||||
# f"ignore_tables {missing_tables} not found in database"
|
||||
# )
|
||||
# usable_tables = self.get_usable_table_names()
|
||||
# self._usable_tables = set(usable_tables) if usable_tables else self._all_tables
|
||||
|
||||
# if not isinstance(sample_rows_in_table_info, int):
|
||||
# raise TypeError("sample_rows_in_table_info must be an integer")
|
||||
#
|
||||
# self._sample_rows_in_table_info = sample_rows_in_table_info
|
||||
# self._indexes_in_table_info = indexes_in_table_info
|
||||
#
|
||||
# self._custom_table_info = custom_table_info
|
||||
# if self._custom_table_info:
|
||||
# if not isinstance(self._custom_table_info, dict):
|
||||
# raise TypeError(
|
||||
# "table_info must be a dictionary with table names as keys and the "
|
||||
# "desired table info as values"
|
||||
# )
|
||||
# # only keep the tables that are also present in the database
|
||||
# intersection = set(self._custom_table_info).intersection(self._all_tables)
|
||||
# self._custom_table_info = dict(
|
||||
# (table, self._custom_table_info[table])
|
||||
# for table in self._custom_table_info
|
||||
# if table in intersection
|
||||
# )
|
||||
|
||||
# self._metadata = metadata or MetaData()
|
||||
# # # including view support if view_support = true
|
||||
# self._metadata.reflect(
|
||||
# views=view_support,
|
||||
# bind=self._engine,
|
||||
# only=list(self._usable_tables),
|
||||
# schema=self._schema,
|
||||
# )
|
||||
|
||||
@classmethod
|
||||
def from_uri(
|
||||
cls, database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any
|
||||
) -> RDBMSDatabase:
|
||||
"""Construct a SQLAlchemy engine from URI."""
|
||||
_engine_args = engine_args or {}
|
||||
return cls(create_engine(database_uri, **_engine_args), **kwargs)
|
||||
|
||||
@property
|
||||
def dialect(self) -> str:
|
||||
"""Return string representation of dialect to use."""
|
||||
return self._engine.dialect.name
|
||||
|
||||
def get_usable_table_names(self) -> Iterable[str]:
|
||||
"""Get names of tables available."""
|
||||
if self._include_tables:
|
||||
return self._include_tables
|
||||
return self._all_tables - self._ignore_tables
|
||||
|
||||
def get_table_names(self) -> Iterable[str]:
|
||||
"""Get names of tables available."""
|
||||
warnings.warn(
|
||||
"This method is deprecated - please use `get_usable_table_names`."
|
||||
)
|
||||
return self.get_usable_table_names()
|
||||
|
||||
def get_session(self, db_name: str):
|
||||
session = self._db_sessions()
|
||||
|
||||
self._metadata = MetaData()
|
||||
# sql = f"use {db_name}"
|
||||
sql = text(f"use `{db_name}`")
|
||||
session.execute(sql)
|
||||
|
||||
# 处理表信息数据
|
||||
|
||||
self._metadata.reflect(bind=self._engine, schema=db_name)
|
||||
|
||||
# including view support by adding the views as well as tables to the all
|
||||
# tables list if view_support is True
|
||||
self._all_tables = set(
|
||||
self._inspector.get_table_names(schema=db_name)
|
||||
+ (
|
||||
self._inspector.get_view_names(schema=db_name)
|
||||
if self.view_support
|
||||
else []
|
||||
)
|
||||
)
|
||||
|
||||
return session
|
||||
|
||||
def get_current_db_name(self, session) -> str:
|
||||
return session.execute(text("SELECT DATABASE()")).scalar()
|
||||
|
||||
def table_simple_info(self, session):
|
||||
_sql = f"""
|
||||
select concat(table_name, "(" , group_concat(column_name), ")") as schema_info from information_schema.COLUMNS where table_schema="{self.get_current_db_name(session)}" group by TABLE_NAME;
|
||||
"""
|
||||
cursor = session.execute(text(_sql))
|
||||
results = cursor.fetchall()
|
||||
return results
|
||||
|
||||
@property
|
||||
def table_info(self) -> str:
|
||||
"""Information about all tables in the database."""
|
||||
return self.get_table_info()
|
||||
|
||||
def get_table_info(self, table_names: Optional[List[str]] = None) -> str:
|
||||
"""Get information about specified tables.
|
||||
|
||||
Follows best practices as specified in: Rajkumar et al, 2022
|
||||
(https://arxiv.org/abs/2204.00498)
|
||||
|
||||
If `sample_rows_in_table_info`, the specified number of sample rows will be
|
||||
appended to each table description. This can increase performance as
|
||||
demonstrated in the paper.
|
||||
"""
|
||||
all_table_names = self.get_usable_table_names()
|
||||
if table_names is not None:
|
||||
missing_tables = set(table_names).difference(all_table_names)
|
||||
if missing_tables:
|
||||
raise ValueError(f"table_names {missing_tables} not found in database")
|
||||
all_table_names = table_names
|
||||
|
||||
meta_tables = [
|
||||
tbl
|
||||
for tbl in self._metadata.sorted_tables
|
||||
if tbl.name in set(all_table_names)
|
||||
and not (self.dialect == "sqlite" and tbl.name.startswith("sqlite_"))
|
||||
]
|
||||
|
||||
tables = []
|
||||
for table in meta_tables:
|
||||
if self._custom_table_info and table.name in self._custom_table_info:
|
||||
tables.append(self._custom_table_info[table.name])
|
||||
continue
|
||||
|
||||
# add create table command
|
||||
create_table = str(CreateTable(table).compile(self._engine))
|
||||
table_info = f"{create_table.rstrip()}"
|
||||
has_extra_info = (
|
||||
self._indexes_in_table_info or self._sample_rows_in_table_info
|
||||
)
|
||||
if has_extra_info:
|
||||
table_info += "\n\n/*"
|
||||
if self._indexes_in_table_info:
|
||||
table_info += f"\n{self._get_table_indexes(table)}\n"
|
||||
if self._sample_rows_in_table_info:
|
||||
table_info += f"\n{self._get_sample_rows(table)}\n"
|
||||
if has_extra_info:
|
||||
table_info += "*/"
|
||||
tables.append(table_info)
|
||||
final_str = "\n\n".join(tables)
|
||||
return final_str
|
||||
|
||||
def _get_sample_rows(self, table: Table) -> str:
|
||||
# build the select command
|
||||
command = select(table).limit(self._sample_rows_in_table_info)
|
||||
|
||||
# save the columns in string format
|
||||
columns_str = "\t".join([col.name for col in table.columns])
|
||||
|
||||
try:
|
||||
# get the sample rows
|
||||
with self._engine.connect() as connection:
|
||||
sample_rows_result: CursorResult = connection.execute(command)
|
||||
# shorten values in the sample rows
|
||||
sample_rows = list(
|
||||
map(lambda ls: [str(i)[:100] for i in ls], sample_rows_result)
|
||||
)
|
||||
|
||||
# save the sample rows in string format
|
||||
sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows])
|
||||
|
||||
# in some dialects when there are no rows in the table a
|
||||
# 'ProgrammingError' is returned
|
||||
except ProgrammingError:
|
||||
sample_rows_str = ""
|
||||
|
||||
return (
|
||||
f"{self._sample_rows_in_table_info} rows from {table.name} table:\n"
|
||||
f"{columns_str}\n"
|
||||
f"{sample_rows_str}"
|
||||
)
|
||||
|
||||
def _get_table_indexes(self, table: Table) -> str:
|
||||
indexes = self._inspector.get_indexes(table.name)
|
||||
indexes_formatted = "\n".join(map(_format_index, indexes))
|
||||
return f"Table Indexes:\n{indexes_formatted}"
|
||||
|
||||
def get_table_info_no_throw(self, table_names: Optional[List[str]] = None) -> str:
|
||||
"""Get information about specified tables."""
|
||||
try:
|
||||
return self.get_table_info(table_names)
|
||||
except ValueError as e:
|
||||
"""Format the error message"""
|
||||
return f"Error: {e}"
|
||||
|
||||
def run(self, session, command: str, fetch: str = "all") -> List:
|
||||
"""Execute a SQL command and return a string representing the results."""
|
||||
cursor = session.execute(text(command))
|
||||
if cursor.returns_rows:
|
||||
if fetch == "all":
|
||||
result = cursor.fetchall()
|
||||
elif fetch == "one":
|
||||
result = cursor.fetchone()[0] # type: ignore
|
||||
else:
|
||||
raise ValueError("Fetch parameter must be either 'one' or 'all'")
|
||||
field_names = tuple(i[0:] for i in cursor.keys())
|
||||
|
||||
result = list(result)
|
||||
result.insert(0, field_names)
|
||||
return result
|
||||
|
||||
def run_no_throw(self, session, command: str, fetch: str = "all") -> List:
|
||||
"""Execute a SQL command and return a string representing the results.
|
||||
|
||||
If the statement returns rows, a string of the results is returned.
|
||||
If the statement returns no rows, an empty string is returned.
|
||||
|
||||
If the statement throws an error, the error message is returned.
|
||||
"""
|
||||
try:
|
||||
return self.run(session, command, fetch)
|
||||
except SQLAlchemyError as e:
|
||||
"""Format the error message"""
|
||||
return f"Error: {e}"
|
||||
|
||||
def get_database_list(self):
|
||||
session = self._db_sessions()
|
||||
cursor = session.execute(text(" show databases;"))
|
||||
results = cursor.fetchall()
|
||||
return [
|
||||
d[0]
|
||||
for d in results
|
||||
if d[0] not in ["information_schema", "performance_schema", "sys", "mysql"]
|
||||
]
|
@@ -105,18 +105,14 @@ class Conversation:
|
||||
}
|
||||
|
||||
|
||||
def gen_sqlgen_conversation(dbname):
|
||||
from pilot.connections.mysql import MySQLOperator
|
||||
|
||||
mo = MySQLOperator(**(DB_SETTINGS))
|
||||
|
||||
message = ""
|
||||
|
||||
schemas = mo.get_schema(dbname)
|
||||
for s in schemas:
|
||||
message += s["schema_info"] + ";"
|
||||
return f"Database {dbname} Schema information as follows: {message}\n"
|
||||
|
||||
conv_default = Conversation(
|
||||
system = None,
|
||||
roles=("human", "ai"),
|
||||
messages=[],
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
conv_one_shot = Conversation(
|
||||
system="A chat between a curious user and an artificial intelligence assistant, who very familiar with database related knowledge. "
|
||||
@@ -261,7 +257,15 @@ conv_qa_prompt_template = """ 基于以下已知的信息, 专业、简要的回
|
||||
# question:
|
||||
# {question}
|
||||
# """
|
||||
default_conversation = conv_one_shot
|
||||
default_conversation = conv_default
|
||||
|
||||
|
||||
chat_mode_title = {
|
||||
"sql_generate_diagnostics": get_lang_text("sql_analysis_and_diagnosis"),
|
||||
"chat_use_plugin": get_lang_text("chat_use_plugin"),
|
||||
"knowledge_qa": get_lang_text("knowledge_qa"),
|
||||
|
||||
}
|
||||
|
||||
conversation_sql_mode = {
|
||||
"auto_execute_ai_response": get_lang_text("sql_generate_mode_direct"),
|
||||
@@ -274,15 +278,11 @@ conversation_types = {
|
||||
"knowledge_qa_type_default_knowledge_base_dialogue"
|
||||
),
|
||||
"custome": get_lang_text("knowledge_qa_type_add_knowledge_base_dialogue"),
|
||||
"auto_execute_plugin": get_lang_text("dialogue_use_plugin"),
|
||||
"url": get_lang_text("knowledge_qa_type_url_knowledge_dialogue"),
|
||||
}
|
||||
|
||||
conv_templates = {
|
||||
"conv_one_shot": conv_one_shot,
|
||||
"vicuna_v1": conv_vicuna_v1,
|
||||
"auto_dbgpt_one_shot": auto_dbgpt_one_shot,
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
message = gen_sqlgen_conversation("dbgpt")
|
||||
print(message)
|
||||
}
|
@@ -14,17 +14,22 @@ lang_dicts = {
|
||||
"knowledge_qa_type_llm_native_dialogue": "LLM原生对话",
|
||||
"knowledge_qa_type_default_knowledge_base_dialogue": "默认知识库对话",
|
||||
"knowledge_qa_type_add_knowledge_base_dialogue": "新增知识库对话",
|
||||
"dialogue_use_plugin": "对话使用插件",
|
||||
"knowledge_qa_type_url_knowledge_dialogue": "URL网页知识对话",
|
||||
"create_knowledge_base": "新建知识库",
|
||||
"sql_schema_info": "数据库{}的Schema信息如下: {}\n",
|
||||
"current_dialogue_mode": "当前对话模式",
|
||||
"database_smart_assistant": "数据库智能助手",
|
||||
"sql_vs_setting": "自动执行模式下, DB-GPT可以具备执行SQL、从网络读取知识自动化存储学习的能力",
|
||||
"knowledge_qa": "知识问答",
|
||||
"chat_use_plugin": "插件模式",
|
||||
"dialogue_use_plugin": "对话使用插件",
|
||||
"select_plugin": "选择插件",
|
||||
"configure_knowledge_base": "配置知识库",
|
||||
"new_klg_name": "新知识库名称",
|
||||
"url_input_label": "输入网页地址",
|
||||
"add_as_new_klg": "添加为新知识库",
|
||||
"add_file_to_klg": "向知识库中添加文件",
|
||||
|
||||
"upload_file": "上传文件",
|
||||
"add_file": "添加文件",
|
||||
"upload_and_load_to_klg": "上传并加载到知识库",
|
||||
@@ -47,14 +52,18 @@ lang_dicts = {
|
||||
"knowledge_qa_type_llm_native_dialogue": "LLM native dialogue",
|
||||
"knowledge_qa_type_default_knowledge_base_dialogue": "Default documents",
|
||||
"knowledge_qa_type_add_knowledge_base_dialogue": "Added documents",
|
||||
"knowledge_qa_type_url_knowledge_dialogue": "Chat with url",
|
||||
"dialogue_use_plugin": "Dialogue Extension",
|
||||
"create_knowledge_base": "Create Knowledge Base",
|
||||
"sql_schema_info": "the schema information of database {}: {}\n",
|
||||
"current_dialogue_mode": "Current dialogue mode",
|
||||
"database_smart_assistant": "Database smart assistant",
|
||||
"sql_vs_setting": "In the automatic execution mode, DB-GPT can have the ability to execute SQL, read data from the network, automatically store and learn",
|
||||
"chat_use_plugin": "Plugin Mode",
|
||||
"select_plugin": "Select Plugin",
|
||||
"knowledge_qa": "Documents QA",
|
||||
"configure_knowledge_base": "Configure Documents",
|
||||
"url_input_label": "Please input url",
|
||||
"new_klg_name": "New document name",
|
||||
"add_as_new_klg": "Add as new documents",
|
||||
"add_file_to_klg": "Add file to documents",
|
||||
|
33
pilot/memory/chat_history/mem_history.py
Normal file
33
pilot/memory/chat_history/mem_history.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from typing import List
|
||||
import json
|
||||
import os
|
||||
import datetime
|
||||
from pilot.memory.chat_history.base import BaseChatHistoryMemory
|
||||
from pathlib import Path
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.message import (
|
||||
OnceConversation,
|
||||
conversation_from_dict,
|
||||
conversations_to_dict,
|
||||
)
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class MemHistoryMemory(BaseChatHistoryMemory):
|
||||
histroies_map = {}
|
||||
|
||||
def __init__(self, chat_session_id: str):
|
||||
self.chat_seesion_id = chat_session_id
|
||||
self.histroies_map.update({chat_session_id: []})
|
||||
|
||||
def messages(self) -> List[OnceConversation]:
|
||||
return self.histroies_map.get(self.chat_seesion_id)
|
||||
|
||||
def append(self, once_message: OnceConversation) -> None:
|
||||
self.histroies_map.get(self.chat_seesion_id).append(once_message)
|
||||
|
||||
def clear(self) -> None:
|
||||
self.histroies_map.pop(self.chat_seesion_id)
|
@@ -21,22 +21,46 @@ def proxyllm_generate_stream(model, tokenizer, params, device, context_len=2048)
|
||||
}
|
||||
|
||||
messages = prompt.split(stop)
|
||||
|
||||
# Add history conversation
|
||||
for i in range(1, len(messages) - 2, 2):
|
||||
history.append(
|
||||
{"role": "user", "content": messages[i].split(ROLE_USER + ":")[1]},
|
||||
)
|
||||
history.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": messages[i + 1].split(ROLE_ASSISTANT + ":")[1],
|
||||
}
|
||||
)
|
||||
for message in messages:
|
||||
if len(message) <= 0:
|
||||
continue
|
||||
if "human:" in message:
|
||||
history.append(
|
||||
{"role": "user", "content": message.split("human:")[1]},
|
||||
)
|
||||
elif "system:" in message:
|
||||
history.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": message.split("system:")[1],
|
||||
}
|
||||
)
|
||||
elif "ai:" in message:
|
||||
history.append(
|
||||
{
|
||||
"role": "ai",
|
||||
"content": message.split("ai:")[1],
|
||||
}
|
||||
)
|
||||
else:
|
||||
history.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": message,
|
||||
}
|
||||
)
|
||||
|
||||
# 把最后一个用户的信息移动到末尾
|
||||
temp_his = history[::-1]
|
||||
last_user_input = None
|
||||
for m in temp_his:
|
||||
if m["role"] == "user":
|
||||
last_user_input = m
|
||||
if last_user_input:
|
||||
history.remove(last_user_input)
|
||||
history.append(last_user_input)
|
||||
|
||||
# Add user query
|
||||
query = messages[-2].split(ROLE_USER + ":")[1]
|
||||
history.append({"role": "user", "content": query})
|
||||
payloads = {
|
||||
"model": "gpt-3.5-turbo", # just for test, remove this later
|
||||
"messages": history,
|
||||
|
@@ -13,12 +13,17 @@ from typing import (
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
from pilot.utils import build_logger
|
||||
import re
|
||||
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
|
||||
from pilot.prompts.base import PromptValue
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
from pilot.configs.config import Config
|
||||
|
||||
T = TypeVar("T")
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class BaseOutputParser(ABC):
|
||||
@@ -31,9 +36,39 @@ class BaseOutputParser(ABC):
|
||||
self.sep = sep
|
||||
self.is_stream_out = is_stream_out
|
||||
|
||||
def __post_process_code(self, code):
|
||||
sep = "\n```"
|
||||
if sep in code:
|
||||
blocks = code.split(sep)
|
||||
if len(blocks) % 2 == 1:
|
||||
for i in range(1, len(blocks), 2):
|
||||
blocks[i] = blocks[i].replace("\\_", "_")
|
||||
code = sep.join(blocks)
|
||||
return code
|
||||
|
||||
# TODO 后续和模型绑定
|
||||
def _parse_model_stream_resp(self, response, sep: str):
|
||||
pass
|
||||
|
||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode())
|
||||
|
||||
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
|
||||
"""
|
||||
if data["error_code"] == 0:
|
||||
if "vicuna" in CFG.LLM_MODEL:
|
||||
|
||||
output = data["text"].strip()
|
||||
else:
|
||||
output = data["text"].strip()
|
||||
|
||||
output = self.__post_process_code(output)
|
||||
yield output
|
||||
else:
|
||||
output = (
|
||||
data["text"] + f" (error_code: {data['error_code']})"
|
||||
)
|
||||
yield output
|
||||
|
||||
def _parse_model_nostream_resp(self, response, sep: str):
|
||||
text = response.text.strip()
|
||||
@@ -57,12 +92,12 @@ class BaseOutputParser(ABC):
|
||||
ai_response = ai_response.replace("\n", "")
|
||||
ai_response = ai_response.replace("\_", "_")
|
||||
ai_response = ai_response.replace("\*", "*")
|
||||
print("un_stream clear response:{}", ai_response)
|
||||
print("un_stream ai response:", ai_response)
|
||||
return ai_response
|
||||
else:
|
||||
raise ValueError("Model server error!code=" + respObj_ex["error_code"])
|
||||
|
||||
def parse_model_server_out(self, response) -> str:
|
||||
def parse_model_server_out(self, response):
|
||||
"""
|
||||
parse the model server http response
|
||||
Args:
|
||||
@@ -85,7 +120,28 @@ class BaseOutputParser(ABC):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
pass
|
||||
cleaned_output = model_out_text.rstrip()
|
||||
if "```json" in cleaned_output:
|
||||
_, cleaned_output = cleaned_output.split("```json")
|
||||
if "```" in cleaned_output:
|
||||
cleaned_output, _ = cleaned_output.split("```")
|
||||
if cleaned_output.startswith("```json"):
|
||||
cleaned_output = cleaned_output[len("```json"):]
|
||||
if cleaned_output.startswith("```"):
|
||||
cleaned_output = cleaned_output[len("```"):]
|
||||
if cleaned_output.endswith("```"):
|
||||
cleaned_output = cleaned_output[: -len("```")]
|
||||
cleaned_output = cleaned_output.strip()
|
||||
if not cleaned_output.startswith("{") or not cleaned_output.endswith("}"):
|
||||
logger.info("illegal json processing")
|
||||
json_pattern = r"{(.+?)}"
|
||||
m = re.search(json_pattern, cleaned_output)
|
||||
if m:
|
||||
cleaned_output = m.group(0)
|
||||
else:
|
||||
raise ValueError("model server out not fllow the prompt!")
|
||||
cleaned_output = cleaned_output.strip().replace('\n', '').replace('\\n', '').replace('\\', '').replace('\\', '')
|
||||
return cleaned_output
|
||||
|
||||
def parse_view_response(self, ai_text) -> str:
|
||||
"""
|
||||
@@ -96,7 +152,7 @@ class BaseOutputParser(ABC):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
pass
|
||||
return ai_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
"""Instructions on how the LLM output should be formatted."""
|
||||
|
@@ -1,143 +0,0 @@
|
||||
import platform
|
||||
from typing import Optional
|
||||
|
||||
import distro
|
||||
import yaml
|
||||
|
||||
from pilot.configs.config import Config
|
||||
from pilot.prompts.generator import PromptGenerator
|
||||
from pilot.prompts.prompt import (
|
||||
DEFAULT_PROMPT_OHTER,
|
||||
DEFAULT_TRIGGERING_PROMPT,
|
||||
build_default_prompt_generator,
|
||||
)
|
||||
|
||||
|
||||
class AutoModePrompt:
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ai_goals: list | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize a class instance
|
||||
|
||||
Parameters:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
api_budget (float): The maximum dollar value for API calls (0.0 means infinite)
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if ai_goals is None:
|
||||
ai_goals = []
|
||||
self.ai_goals = ai_goals
|
||||
self.prompt_generator = None
|
||||
self.command_registry = None
|
||||
|
||||
def construct_follow_up_prompt(
|
||||
self,
|
||||
user_input: [str],
|
||||
last_auto_return: str = None,
|
||||
prompt_generator: Optional[PromptGenerator] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Build complete prompt information based on subsequent dialogue information entered by the user
|
||||
Args:
|
||||
self:
|
||||
prompt_generator:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
prompt_start = DEFAULT_PROMPT_OHTER
|
||||
if prompt_generator is None:
|
||||
prompt_generator = build_default_prompt_generator()
|
||||
prompt_generator.goals = user_input
|
||||
prompt_generator.command_registry = self.command_registry
|
||||
# 加载插件中可用命令
|
||||
cfg = Config()
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
prompt_generator = plugin.post_prompt(prompt_generator)
|
||||
|
||||
full_prompt = f"{prompt_start}\n\nGOALS:\n\n"
|
||||
if not self.ai_goals:
|
||||
self.ai_goals = user_input
|
||||
for i, goal in enumerate(self.ai_goals):
|
||||
full_prompt += (
|
||||
f"{i+1}.According to the provided Schema information, {goal}\n"
|
||||
)
|
||||
# if last_auto_return == None:
|
||||
# full_prompt += f"{cfg.last_plugin_return}\n\n"
|
||||
# else:
|
||||
# full_prompt += f"{last_auto_return}\n\n"
|
||||
|
||||
full_prompt += f"Constraints:\n\n{DEFAULT_TRIGGERING_PROMPT}\n"
|
||||
|
||||
full_prompt += """Based on the above definition, answer the current goal and ensure that the response meets both the current constraints and the above definition and constraints"""
|
||||
self.prompt_generator = prompt_generator
|
||||
return full_prompt
|
||||
|
||||
def construct_first_prompt(
|
||||
self,
|
||||
fisrt_message: [str] = [],
|
||||
db_schemes: str = None,
|
||||
prompt_generator: Optional[PromptGenerator] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Build complete prompt information based on the initial dialogue information entered by the user
|
||||
Args:
|
||||
self:
|
||||
prompt_generator:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
prompt_start = (
|
||||
"Your decisions must always be made independently without"
|
||||
" seeking user assistance. Play to your strengths as an LLM and pursue"
|
||||
" simple strategies with no legal complications."
|
||||
""
|
||||
)
|
||||
if prompt_generator is None:
|
||||
prompt_generator = build_default_prompt_generator()
|
||||
prompt_generator.goals = fisrt_message
|
||||
prompt_generator.command_registry = self.command_registry
|
||||
# 加载插件中可用命令
|
||||
cfg = Config()
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
prompt_generator = plugin.post_prompt(prompt_generator)
|
||||
if cfg.execute_local_commands:
|
||||
# add OS info to prompt
|
||||
os_name = platform.system()
|
||||
os_info = (
|
||||
platform.platform(terse=True)
|
||||
if os_name != "Linux"
|
||||
else distro.name(pretty=True)
|
||||
)
|
||||
|
||||
prompt_start += f"\nThe OS you are running on is: {os_info}"
|
||||
|
||||
# Construct full prompt
|
||||
full_prompt = f"{prompt_start}\n\nGOALS:\n\n"
|
||||
if not self.ai_goals:
|
||||
self.ai_goals = fisrt_message
|
||||
for i, goal in enumerate(self.ai_goals):
|
||||
full_prompt += (
|
||||
f"{i+1}.According to the provided Schema information,{goal}\n"
|
||||
)
|
||||
if db_schemes:
|
||||
full_prompt += f"\nSchema:\n\n"
|
||||
full_prompt += f"{db_schemes}"
|
||||
|
||||
# if self.api_budget > 0.0:
|
||||
# full_prompt += f"\nIt takes money to let you run. Your API budget is ${self.api_budget:.3f}"
|
||||
self.prompt_generator = prompt_generator
|
||||
full_prompt += f"\n\n{prompt_generator.generate_prompt_string()}"
|
||||
return full_prompt
|
@@ -3,7 +3,7 @@ import json
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
|
||||
class PromptGenerator:
|
||||
class PluginPromptGenerator:
|
||||
"""
|
||||
A class for generating custom prompt strings based on constraints, commands,
|
||||
resources, and performance evaluations.
|
||||
@@ -133,6 +133,11 @@ class PromptGenerator:
|
||||
else:
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
||||
|
||||
|
||||
def generate_commands_string(self)->str:
|
||||
return f"{self._generate_numbered_list(self.commands, item_type='command')}"
|
||||
|
||||
|
||||
def generate_prompt_string(self) -> str:
|
||||
"""
|
||||
Generate a prompt string based on the constraints, commands, resources,
|
||||
|
@@ -1,73 +0,0 @@
|
||||
from pilot.configs.config import Config
|
||||
from pilot.prompts.generator import PromptGenerator
|
||||
|
||||
CFG = Config()
|
||||
|
||||
DEFAULT_TRIGGERING_PROMPT = (
|
||||
"Determine which next command to use, and respond using the format specified above"
|
||||
)
|
||||
|
||||
DEFAULT_PROMPT_OHTER = "Previous response was excellent. Please response according to the requirements based on the new goal"
|
||||
|
||||
|
||||
def build_default_prompt_generator() -> PromptGenerator:
|
||||
"""
|
||||
This function generates a prompt string that includes various constraints,
|
||||
commands, resources, and performance evaluations.
|
||||
|
||||
Returns:
|
||||
str: The generated prompt string.
|
||||
"""
|
||||
|
||||
# Initialize the PromptGenerator object
|
||||
prompt_generator = PromptGenerator()
|
||||
|
||||
# Add constraints to the PromptGenerator object
|
||||
# prompt_generator.add_constraint(
|
||||
# "~4000 word limit for short term memory. Your short term memory is short, so"
|
||||
# " immediately save important information to files."
|
||||
# )
|
||||
prompt_generator.add_constraint(
|
||||
"If you are unsure how you previously did something or want to recall past"
|
||||
" events, thinking about similar events will help you remember."
|
||||
)
|
||||
# prompt_generator.add_constraint("No user assistance")
|
||||
|
||||
prompt_generator.add_constraint("Only output one correct JSON response at a time")
|
||||
prompt_generator.add_constraint(
|
||||
'Exclusively use the commands listed in double quotes e.g. "command name"'
|
||||
)
|
||||
prompt_generator.add_constraint(
|
||||
"If there is SQL in the args parameter, ensure to use the database and table definitions in Schema, and ensure that the fields and table names are in the definition"
|
||||
)
|
||||
prompt_generator.add_constraint(
|
||||
"The generated command args need to comply with the definition of the command"
|
||||
)
|
||||
|
||||
# Add resources to the PromptGenerator object
|
||||
# prompt_generator.add_resource(
|
||||
# "Internet access for searches and information gathering."
|
||||
# )
|
||||
# prompt_generator.add_resource("Long Term memory management.")
|
||||
# prompt_generator.add_resource(
|
||||
# "DB-GPT powered Agents for delegation of simple tasks."
|
||||
# )
|
||||
# prompt_generator.add_resource("File output.")
|
||||
|
||||
# Add performance evaluations to the PromptGenerator object
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Continuously review and analyze your actions to ensure you are performing to"
|
||||
" the best of your abilities."
|
||||
)
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Constructively self-criticize your big-picture behavior constantly."
|
||||
)
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Reflect on past decisions and strategies to refine your approach."
|
||||
)
|
||||
# prompt_generator.add_performance_evaluation(
|
||||
# "Every command has a cost, so be smart and efficient. Aim to complete tasks in"
|
||||
# " the least number of steps."
|
||||
# )
|
||||
# prompt_generator.add_performance_evaluation("Write all code to a file.")
|
||||
return prompt_generator
|
@@ -1,52 +0,0 @@
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
|
||||
class PromptGenerator:
|
||||
"""
|
||||
generating custom prompt strings based on constraints;
|
||||
Compatible with AutoGpt Plugin;
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
Initialize the PromptGenerator object with empty lists of constraints,
|
||||
commands, resources, and performance evaluations.
|
||||
"""
|
||||
self.constraints = []
|
||||
self.commands = []
|
||||
self.resources = []
|
||||
self.performance_evaluation = []
|
||||
self.goals = []
|
||||
self.command_registry = None
|
||||
self.name = "Bob"
|
||||
self.role = "AI"
|
||||
self.response_format = None
|
||||
|
||||
def add_command(
|
||||
self,
|
||||
command_label: str,
|
||||
command_name: str,
|
||||
args=None,
|
||||
function: Optional[Callable] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Add a command to the commands list with a label, name, and optional arguments.
|
||||
GB-GPT and Auto-GPT plugin registration command.
|
||||
Args:
|
||||
command_label (str): The label of the command.
|
||||
command_name (str): The name of the command.
|
||||
args (dict, optional): A dictionary containing argument names and their
|
||||
values. Defaults to None.
|
||||
function (callable, optional): A callable function to be called when
|
||||
the command is executed. Defaults to None.
|
||||
"""
|
||||
if args is None:
|
||||
args = {}
|
||||
command_args = {arg_key: arg_value for arg_key, arg_value in args.items()}
|
||||
command = {
|
||||
"label": command_label,
|
||||
"name": command_name,
|
||||
"args": command_args,
|
||||
"function": function,
|
||||
}
|
||||
self.commands.append(command)
|
@@ -31,15 +31,15 @@ DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = {
|
||||
class PromptTemplate(BaseModel, ABC):
|
||||
input_variables: List[str]
|
||||
"""A list of the names of the variables the prompt template expects."""
|
||||
template_scene: str
|
||||
template_scene: Optional[str]
|
||||
|
||||
template_define: str
|
||||
template_define: Optional[str]
|
||||
"""this template define"""
|
||||
template: str
|
||||
template: Optional[str]
|
||||
"""The prompt template."""
|
||||
template_format: str = "f-string"
|
||||
"""The format of the prompt template. Options are: 'f-string', 'jinja2'."""
|
||||
response_format: str
|
||||
response_format: Optional[str]
|
||||
"""default use stream out"""
|
||||
stream_out: bool = True
|
||||
""""""
|
||||
@@ -57,52 +57,12 @@ class PromptTemplate(BaseModel, ABC):
|
||||
"""Return the prompt type key."""
|
||||
return "prompt"
|
||||
|
||||
def _generate_command_string(self, command: Dict[str, Any]) -> str:
|
||||
"""
|
||||
Generate a formatted string representation of a command.
|
||||
|
||||
Args:
|
||||
command (dict): A dictionary containing command information.
|
||||
|
||||
Returns:
|
||||
str: The formatted command string.
|
||||
"""
|
||||
args_string = ", ".join(
|
||||
f'"{key}": "{value}"' for key, value in command["args"].items()
|
||||
)
|
||||
return f'{command["label"]}: "{command["name"]}", args: {args_string}'
|
||||
|
||||
def _generate_numbered_list(self, items: List[Any], item_type="list") -> str:
|
||||
"""
|
||||
Generate a numbered list from given items based on the item_type.
|
||||
|
||||
Args:
|
||||
items (list): A list of items to be numbered.
|
||||
item_type (str, optional): The type of items in the list.
|
||||
Defaults to 'list'.
|
||||
|
||||
Returns:
|
||||
str: The formatted numbered list.
|
||||
"""
|
||||
if item_type == "command":
|
||||
command_strings = []
|
||||
if self.command_registry:
|
||||
command_strings += [
|
||||
str(item)
|
||||
for item in self.command_registry.commands.values()
|
||||
if item.enabled
|
||||
]
|
||||
# terminate command is added manually
|
||||
command_strings += [self._generate_command_string(item) for item in items]
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(command_strings))
|
||||
else:
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
||||
|
||||
def format(self, **kwargs: Any) -> str:
|
||||
"""Format the prompt with the inputs."""
|
||||
|
||||
kwargs["response"] = json.dumps(self.response_format, indent=4)
|
||||
return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
|
||||
if self.template:
|
||||
if self.response_format:
|
||||
kwargs["response"] = json.dumps(self.response_format, indent=4)
|
||||
return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
|
||||
|
||||
def add_goals(self, goal: str) -> None:
|
||||
self.goals.append(goal)
|
||||
|
@@ -2,8 +2,10 @@ from enum import Enum
|
||||
|
||||
|
||||
class ChatScene(Enum):
|
||||
ChatWithDb = "chat_with_db"
|
||||
ChatWithDbExecute = "chat_with_db_execute"
|
||||
ChatWithDbQA = "chat_with_db_qa"
|
||||
ChatExecution = "chat_execution"
|
||||
ChatKnowledge = "chat_default_knowledge"
|
||||
ChatNewKnowledge = "chat_new_knowledge"
|
||||
ChatUrlKnowledge = "chat_url_knowledge"
|
||||
ChatNormal = "chat_normal"
|
||||
|
@@ -1,4 +1,8 @@
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
import datetime
|
||||
import traceback
|
||||
import json
|
||||
from pydantic import BaseModel, Field, root_validator, validator, Extra
|
||||
from typing import (
|
||||
Any,
|
||||
@@ -19,14 +23,20 @@ from pilot.scene.message import OnceConversation
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.memory.chat_history.base import BaseChatHistoryMemory
|
||||
from pilot.memory.chat_history.file_history import FileHistoryMemory
|
||||
from pilot.memory.chat_history.mem_history import MemHistoryMemory
|
||||
|
||||
from pilot.configs.model_config import LOGDIR, DATASETS_DIR
|
||||
from pilot.utils import (
|
||||
build_logger,
|
||||
server_error_msg,
|
||||
)
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.scene.base_message import (
|
||||
BaseMessage,
|
||||
SystemMessage,
|
||||
HumanMessage,
|
||||
AIMessage,
|
||||
ViewMessage,
|
||||
)
|
||||
from pilot.configs.config import Config
|
||||
|
||||
logger = build_logger("BaseChat", LOGDIR + "BaseChat.log")
|
||||
@@ -47,20 +57,23 @@ class BaseChat(ABC):
|
||||
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def __init__(self, chat_mode, chat_session_id, current_user_input):
|
||||
def __init__(self,temperature, max_new_tokens, chat_mode, chat_session_id, current_user_input):
|
||||
self.chat_session_id = chat_session_id
|
||||
self.chat_mode = chat_mode
|
||||
self.current_user_input: str = current_user_input
|
||||
self.llm_model = CFG.LLM_MODEL
|
||||
### TODO
|
||||
### can configurable storage methods
|
||||
# self.memory = MemHistoryMemory(chat_session_id)
|
||||
|
||||
## TEST
|
||||
self.memory = FileHistoryMemory(chat_session_id)
|
||||
### load prompt template
|
||||
self.prompt_template: PromptTemplate = CFG.prompt_templates[
|
||||
self.chat_mode.value
|
||||
]
|
||||
self.prompt_template: PromptTemplate = CFG.prompt_templates[self.chat_mode.value]
|
||||
self.history_message: List[OnceConversation] = []
|
||||
self.current_message: OnceConversation = OnceConversation()
|
||||
self.current_tokens_used: int = 0
|
||||
self.temperature = temperature
|
||||
self.max_new_tokens = max_new_tokens
|
||||
### load chat_session_id's chat historys
|
||||
self._load_history(self.chat_session_id)
|
||||
|
||||
@@ -74,14 +87,183 @@ class BaseChat(ABC):
|
||||
def chat_type(self) -> str:
|
||||
raise NotImplementedError("Not supported for this chat type.")
|
||||
|
||||
@abstractmethod
|
||||
def generate_input_values(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
pass
|
||||
|
||||
def __call_base(self):
|
||||
input_values = self.generate_input_values()
|
||||
### Chat sequence advance
|
||||
self.current_message.chat_order = len(self.history_message) + 1
|
||||
self.current_message.add_user_message(self.current_user_input)
|
||||
self.current_message.start_date = datetime.datetime.now()
|
||||
# TODO
|
||||
self.current_message.tokens = 0
|
||||
current_prompt = None
|
||||
|
||||
if self.prompt_template.template:
|
||||
current_prompt = self.prompt_template.format(**input_values)
|
||||
|
||||
### 构建当前对话, 是否安第一次对话prompt构造? 是否考虑切换库
|
||||
if self.history_message:
|
||||
## TODO 带历史对话记录的场景需要确定切换库后怎么处理
|
||||
logger.info(
|
||||
f"There are already {len(self.history_message)} rounds of conversations!"
|
||||
)
|
||||
if current_prompt:
|
||||
self.current_message.add_system_message(current_prompt)
|
||||
|
||||
payload = {
|
||||
"model": self.llm_model,
|
||||
"prompt": self.generate_llm_text(),
|
||||
"temperature": float(self.temperature),
|
||||
"max_new_tokens": int(self.max_new_tokens),
|
||||
"stop": self.prompt_template.sep,
|
||||
}
|
||||
return payload
|
||||
|
||||
def stream_call(self):
|
||||
payload = self.__call_base()
|
||||
logger.info(f"Requert: \n{payload}")
|
||||
ai_response_text = ""
|
||||
try:
|
||||
show_info = ""
|
||||
response = requests.post(
|
||||
urljoin(CFG.MODEL_SERVER, "generate_stream"),
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=120,
|
||||
)
|
||||
|
||||
ai_response_text = self.prompt_template.output_parser.parse_model_server_out(response)
|
||||
|
||||
for resp_text_trunck in ai_response_text:
|
||||
show_info = resp_text_trunck
|
||||
yield resp_text_trunck + "▌"
|
||||
|
||||
self.current_message.add_ai_message(show_info)
|
||||
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
logger.error("model response parase faild!" + str(e))
|
||||
self.current_message.add_view_message(
|
||||
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
|
||||
)
|
||||
### 对话记录存储
|
||||
self.memory.append(self.current_message)
|
||||
|
||||
def nostream_call(self):
|
||||
payload = self.__call_base()
|
||||
logger.info(f"Requert: \n{payload}")
|
||||
ai_response_text = ""
|
||||
try:
|
||||
### 走非流式的模型服务接口
|
||||
response = requests.post(
|
||||
urljoin(CFG.MODEL_SERVER, "generate"),
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=120,
|
||||
)
|
||||
|
||||
### output parse
|
||||
ai_response_text = (
|
||||
self.prompt_template.output_parser.parse_model_server_out(response)
|
||||
)
|
||||
self.current_message.add_ai_message(ai_response_text)
|
||||
prompt_define_response = self.prompt_template.output_parser.parse_prompt_response(ai_response_text)
|
||||
|
||||
result = self.do_with_prompt_response(prompt_define_response)
|
||||
|
||||
if hasattr(prompt_define_response, "thoughts"):
|
||||
if isinstance(prompt_define_response.thoughts, dict):
|
||||
if "speak" in prompt_define_response.thoughts:
|
||||
speak_to_user = prompt_define_response.thoughts.get("speak")
|
||||
else:
|
||||
speak_to_user = str(prompt_define_response.thoughts)
|
||||
else:
|
||||
if hasattr(prompt_define_response.thoughts, "speak"):
|
||||
speak_to_user = prompt_define_response.thoughts.get("speak")
|
||||
elif hasattr(prompt_define_response.thoughts, "reasoning"):
|
||||
speak_to_user = prompt_define_response.thoughts.get("reasoning")
|
||||
else:
|
||||
speak_to_user = prompt_define_response.thoughts
|
||||
else:
|
||||
speak_to_user = prompt_define_response
|
||||
view_message = self.prompt_template.output_parser.parse_view_response(speak_to_user, result)
|
||||
self.current_message.add_view_message(view_message)
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
logger.error("model response parase faild!" + str(e))
|
||||
self.current_message.add_view_message(
|
||||
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
|
||||
)
|
||||
### 对话记录存储
|
||||
self.memory.append(self.current_message)
|
||||
return self.current_ai_response()
|
||||
|
||||
def call(self):
|
||||
pass
|
||||
if self.prompt_template.stream_out:
|
||||
yield self.stream_call()
|
||||
else:
|
||||
return self.nostream_call()
|
||||
|
||||
def chat_show(self):
|
||||
pass
|
||||
def generate_llm_text(self) -> str:
|
||||
text = ""
|
||||
if self.prompt_template.template_define:
|
||||
text = self.prompt_template.template_define + self.prompt_template.sep
|
||||
|
||||
### 处理历史信息
|
||||
if len(self.history_message) > self.chat_retention_rounds:
|
||||
### 使用历史信息的第一轮和最后n轮数据合并成历史对话记录, 做上下文提示时,用户展示消息需要过滤掉
|
||||
for first_message in self.history_message[0].messages:
|
||||
if not isinstance(first_message, ViewMessage):
|
||||
text += (
|
||||
first_message.type
|
||||
+ ":"
|
||||
+ first_message.content
|
||||
+ self.prompt_template.sep
|
||||
)
|
||||
|
||||
index = self.chat_retention_rounds - 1
|
||||
for last_message in self.history_message[-index:].messages:
|
||||
if not isinstance(last_message, ViewMessage):
|
||||
text += (
|
||||
last_message.type
|
||||
+ ":"
|
||||
+ last_message.content
|
||||
+ self.prompt_template.sep
|
||||
)
|
||||
|
||||
else:
|
||||
### 直接历史记录拼接
|
||||
for conversation in self.history_message:
|
||||
for message in conversation.messages:
|
||||
if not isinstance(message, ViewMessage):
|
||||
text += (
|
||||
message.type
|
||||
+ ":"
|
||||
+ message.content
|
||||
+ self.prompt_template.sep
|
||||
)
|
||||
### current conversation
|
||||
|
||||
for now_message in self.current_message.messages:
|
||||
text += (
|
||||
now_message.type + ":" + now_message.content + self.prompt_template.sep
|
||||
)
|
||||
|
||||
return text
|
||||
|
||||
# 暂时为了兼容前端
|
||||
def current_ai_response(self) -> str:
|
||||
pass
|
||||
for message in self.current_message.messages:
|
||||
if message.type == "view":
|
||||
return message.content
|
||||
return None
|
||||
|
||||
def _load_history(self, session_id: str) -> List[OnceConversation]:
|
||||
"""
|
||||
@@ -102,3 +284,4 @@ class BaseChat(ABC):
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
|
0
pilot/scene/chat_db/auto_execute/__init__.py
Normal file
0
pilot/scene/chat_db/auto_execute/__init__.py
Normal file
57
pilot/scene/chat_db/auto_execute/chat.py
Normal file
57
pilot/scene/chat_db/auto_execute/chat.py
Normal file
@@ -0,0 +1,57 @@
|
||||
import json
|
||||
|
||||
from pilot.scene.base_message import (
|
||||
HumanMessage,
|
||||
ViewMessage,
|
||||
)
|
||||
from pilot.scene.base_chat import BaseChat
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
from pilot.common.markdown_text import (
|
||||
generate_htm_table,
|
||||
)
|
||||
from pilot.scene.chat_db.auto_execute.prompt import prompt
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatWithDbAutoExecute(BaseChat):
|
||||
chat_scene: str = ChatScene.ChatWithDbExecute.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, db_name, user_input):
|
||||
""" """
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatWithDbExecute,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
if not db_name:
|
||||
raise ValueError(f"{ChatScene.ChatWithDbExecute.value} mode should chose db!")
|
||||
self.db_name = db_name
|
||||
self.database = CFG.local_db
|
||||
# 准备DB信息(拿到指定库的链接)
|
||||
self.db_connect = self.database.get_session(self.db_name)
|
||||
self.top_k: int = 5
|
||||
|
||||
def generate_input_values(self):
|
||||
input_values = {
|
||||
"input": self.current_user_input,
|
||||
"top_k": str(self.top_k),
|
||||
"dialect": self.database.dialect,
|
||||
"table_info": self.database.table_simple_info(self.db_connect)
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
return self.database.run(self.db_connect, prompt_response.sql)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ss = "{\n \"thoughts\": \"to get the user's city, we need to join the users table with the tran_order table using the user_name column. we also need to filter the results to only show orders for user test1.\",\n \"sql\": \"select o.order_id, o.product_name, u.city from tran_order o join users u on o.user_name = u.user_name where o.user_name = 'test1' limit 5\"\n}"
|
||||
ss.strip().replace('\n', '').replace('\\n', '').replace('', '').replace(' ', '').replace('\\', '').replace('\\', '')
|
||||
print(ss)
|
||||
json.loads(ss)
|
@@ -20,32 +20,11 @@ class DbChatOutputParser(BaseOutputParser):
|
||||
def __init__(self, sep: str, is_stream_out: bool):
|
||||
super().__init__(sep=sep, is_stream_out=is_stream_out)
|
||||
|
||||
def parse_model_server_out(self, response) -> str:
|
||||
return super().parse_model_server_out(response)
|
||||
|
||||
def parse_prompt_response(self, model_out_text):
|
||||
cleaned_output = model_out_text.rstrip()
|
||||
if "```json" in cleaned_output:
|
||||
_, cleaned_output = cleaned_output.split("```json")
|
||||
if "```" in cleaned_output:
|
||||
cleaned_output, _ = cleaned_output.split("```")
|
||||
if cleaned_output.startswith("```json"):
|
||||
cleaned_output = cleaned_output[len("```json") :]
|
||||
if cleaned_output.startswith("```"):
|
||||
cleaned_output = cleaned_output[len("```") :]
|
||||
if cleaned_output.endswith("```"):
|
||||
cleaned_output = cleaned_output[: -len("```")]
|
||||
cleaned_output = cleaned_output.strip()
|
||||
if not cleaned_output.startswith("{") or not cleaned_output.endswith("}"):
|
||||
logger.info("illegal json processing")
|
||||
json_pattern = r"{(.+?)}"
|
||||
m = re.search(json_pattern, cleaned_output)
|
||||
if m:
|
||||
cleaned_output = m.group(0)
|
||||
else:
|
||||
raise ValueError("model server out not fllow the prompt!")
|
||||
|
||||
response = json.loads(cleaned_output)
|
||||
clean_str = super().parse_prompt_response(model_out_text);
|
||||
print("clean prompt response:", clean_str)
|
||||
response = json.loads(clean_str)
|
||||
sql, thoughts = response["sql"], response["thoughts"]
|
||||
return SqlAction(sql, thoughts)
|
||||
|
@@ -1,36 +1,28 @@
|
||||
import json
|
||||
import importlib
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.scene.chat_db.out_parser import DbChatOutputParser, SqlAction
|
||||
from pilot.scene.chat_db.auto_execute.out_parser import DbChatOutputParser, SqlAction
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = """You are an AI designed to answer human questions, please follow the prompts and conventions of the system's input for your answers"""
|
||||
|
||||
PROMPT_SUFFIX = """Only use the following tables:
|
||||
{table_info}
|
||||
|
||||
Question: {input}
|
||||
|
||||
"""
|
||||
|
||||
_DEFAULT_TEMPLATE = """
|
||||
You are a SQL expert. Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
|
||||
Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results.
|
||||
You can order the results by a relevant column to return the most interesting examples in the database.
|
||||
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
|
||||
Use as few tables as possible when querying.
|
||||
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
|
||||
|
||||
"""
|
||||
|
||||
_mysql_prompt = """You are a MySQL expert. Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer to the input question.
|
||||
Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the LIMIT clause as per MySQL. You can order the results to return the most informative data in the database.
|
||||
Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in backticks (`) to denote them as delimited identifiers.
|
||||
Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
|
||||
Pay attention to use CURDATE() function to get the current date, if the question involves "today".
|
||||
PROMPT_SUFFIX = """Only use the following tables generate sql:
|
||||
{table_info}
|
||||
|
||||
Question: {input}
|
||||
|
||||
"""
|
||||
|
||||
@@ -48,14 +40,19 @@ RESPONSE_FORMAT = {
|
||||
"sql": "SQL Query to run",
|
||||
}
|
||||
|
||||
RESPONSE_FORMAT_SIMPLE = {
|
||||
"thoughts": "thoughts summary to say to user",
|
||||
"sql": "SQL Query to run",
|
||||
}
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = False
|
||||
|
||||
chat_db_prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatWithDb.value,
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatWithDbExecute.value,
|
||||
input_variables=["input", "table_info", "dialect", "top_k", "response"],
|
||||
response_format=json.dumps(RESPONSE_FORMAT, indent=4),
|
||||
response_format=json.dumps(RESPONSE_FORMAT_SIMPLE, indent=4),
|
||||
template_define=PROMPT_SCENE_DEFINE,
|
||||
template=_DEFAULT_TEMPLATE + PROMPT_SUFFIX + PROMPT_RESPONSE,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
@@ -63,5 +60,5 @@ chat_db_prompt = PromptTemplate(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
||||
CFG.prompt_templates.update({chat_db_prompt.template_scene: chat_db_prompt})
|
@@ -1,279 +0,0 @@
|
||||
import requests
|
||||
import datetime
|
||||
import threading
|
||||
import json
|
||||
import traceback
|
||||
from urllib.parse import urljoin
|
||||
from sqlalchemy import (
|
||||
MetaData,
|
||||
Table,
|
||||
create_engine,
|
||||
inspect,
|
||||
select,
|
||||
text,
|
||||
)
|
||||
from typing import Any, Iterable, List, Optional
|
||||
|
||||
from pilot.scene.base_message import (
|
||||
BaseMessage,
|
||||
SystemMessage,
|
||||
HumanMessage,
|
||||
AIMessage,
|
||||
ViewMessage,
|
||||
)
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.chat_db.out_parser import SqlAction
|
||||
from pilot.configs.model_config import LOGDIR, DATASETS_DIR
|
||||
from pilot.utils import (
|
||||
build_logger,
|
||||
server_error_msg,
|
||||
)
|
||||
from pilot.common.markdown_text import (
|
||||
generate_markdown_table,
|
||||
generate_htm_table,
|
||||
datas_to_table_html,
|
||||
)
|
||||
from pilot.scene.chat_db.prompt import chat_db_prompt
|
||||
from pilot.out_parser.base import BaseOutputParser
|
||||
from pilot.scene.chat_db.out_parser import DbChatOutputParser
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatWithDb(BaseChat):
|
||||
chat_scene: str = ChatScene.ChatWithDb.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self, chat_session_id, db_name, user_input):
|
||||
""" """
|
||||
super().__init__(ChatScene.ChatWithDb, chat_session_id, user_input)
|
||||
if not db_name:
|
||||
raise ValueError(f"{ChatScene.ChatWithDb.value} mode should chose db!")
|
||||
self.db_name = db_name
|
||||
self.database = CFG.local_db
|
||||
# 准备DB信息(拿到指定库的链接)
|
||||
self.db_connect = self.database.get_session(self.db_name)
|
||||
self.top_k: int = 5
|
||||
|
||||
def call(self) -> str:
|
||||
input_values = {
|
||||
"input": self.current_user_input,
|
||||
"top_k": str(self.top_k),
|
||||
"dialect": self.database.dialect,
|
||||
"table_info": self.database.table_simple_info(self.db_connect),
|
||||
# "stop": self.sep_style,
|
||||
}
|
||||
|
||||
### Chat sequence advance
|
||||
self.current_message.chat_order = len(self.history_message) + 1
|
||||
self.current_message.add_user_message(self.current_user_input)
|
||||
self.current_message.start_date = datetime.datetime.now()
|
||||
# TODO
|
||||
self.current_message.tokens = 0
|
||||
|
||||
current_prompt = self.prompt_template.format(**input_values)
|
||||
|
||||
### 构建当前对话, 是否安第一次对话prompt构造? 是否考虑切换库
|
||||
if self.history_message:
|
||||
## TODO 带历史对话记录的场景需要确定切换库后怎么处理
|
||||
logger.info(
|
||||
f"There are already {len(self.history_message)} rounds of conversations!"
|
||||
)
|
||||
|
||||
self.current_message.add_system_message(current_prompt)
|
||||
|
||||
payload = {
|
||||
"model": self.llm_model,
|
||||
"prompt": self.generate_llm_text(),
|
||||
"temperature": float(self.temperature),
|
||||
"max_new_tokens": int(self.max_new_tokens),
|
||||
"stop": self.prompt_template.sep,
|
||||
}
|
||||
logger.info(f"Requert: \n{payload}")
|
||||
ai_response_text = ""
|
||||
try:
|
||||
### 走非流式的模型服务接口
|
||||
|
||||
response = requests.post(
|
||||
urljoin(CFG.MODEL_SERVER, "generate"),
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=120,
|
||||
)
|
||||
ai_response_text = (
|
||||
self.prompt_template.output_parser.parse_model_server_out(response)
|
||||
)
|
||||
self.current_message.add_ai_message(ai_response_text)
|
||||
prompt_define_response = (
|
||||
self.prompt_template.output_parser.parse_prompt_response(
|
||||
ai_response_text
|
||||
)
|
||||
)
|
||||
|
||||
result = self.database.run(self.db_connect, prompt_define_response.sql)
|
||||
|
||||
if hasattr(prompt_define_response, "thoughts"):
|
||||
if prompt_define_response.thoughts.get("speak"):
|
||||
self.current_message.add_view_message(
|
||||
self.prompt_template.output_parser.parse_view_response(
|
||||
prompt_define_response.thoughts.get("speak"), result
|
||||
)
|
||||
)
|
||||
elif prompt_define_response.thoughts.get("reasoning"):
|
||||
self.current_message.add_view_message(
|
||||
self.prompt_template.output_parser.parse_view_response(
|
||||
prompt_define_response.thoughts.get("reasoning"), result
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.current_message.add_view_message(
|
||||
self.prompt_template.output_parser.parse_view_response(
|
||||
prompt_define_response.thoughts, result
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.current_message.add_view_message(
|
||||
self.prompt_template.output_parser.parse_view_response(
|
||||
prompt_define_response, result
|
||||
)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
logger.error("model response parase faild!" + str(e))
|
||||
self.current_message.add_view_message(
|
||||
f"""<span style=\"color:red\">ERROR!</span>{str(e)}\n {ai_response_text} """
|
||||
)
|
||||
### 对话记录存储
|
||||
self.memory.append(self.current_message)
|
||||
|
||||
def chat_show(self):
|
||||
ret = []
|
||||
# 单论对话只能有一次User 记录 和一次 AI 记录
|
||||
# TODO 推理过程前端展示。。。
|
||||
for message in self.current_message.messages:
|
||||
if isinstance(message, HumanMessage):
|
||||
ret[-1][-2] = message.content
|
||||
# 是否展示推理过程
|
||||
if isinstance(message, ViewMessage):
|
||||
ret[-1][-1] = message.content
|
||||
|
||||
return ret
|
||||
|
||||
# 暂时为了兼容前端
|
||||
def current_ai_response(self) -> str:
|
||||
for message in self.current_message.messages:
|
||||
if message.type == "view":
|
||||
return message.content
|
||||
return None
|
||||
|
||||
def generate_llm_text(self) -> str:
|
||||
text = self.prompt_template.template_define + self.prompt_template.sep
|
||||
### 线处理历史信息
|
||||
if len(self.history_message) > self.chat_retention_rounds:
|
||||
### 使用历史信息的第一轮和最后一轮数据合并成历史对话记录, 做上下文提示时,用户展示消息需要过滤掉
|
||||
for first_message in self.history_message[0].messages:
|
||||
if not isinstance(first_message, ViewMessage):
|
||||
text += (
|
||||
first_message.type
|
||||
+ ":"
|
||||
+ first_message.content
|
||||
+ self.prompt_template.sep
|
||||
)
|
||||
|
||||
index = self.chat_retention_rounds - 1
|
||||
for last_message in self.history_message[-index:].messages:
|
||||
if not isinstance(last_message, ViewMessage):
|
||||
text += (
|
||||
last_message.type
|
||||
+ ":"
|
||||
+ last_message.content
|
||||
+ self.prompt_template.sep
|
||||
)
|
||||
|
||||
else:
|
||||
### 直接历史记录拼接
|
||||
for conversation in self.history_message:
|
||||
for message in conversation.messages:
|
||||
if not isinstance(message, ViewMessage):
|
||||
text += (
|
||||
message.type
|
||||
+ ":"
|
||||
+ message.content
|
||||
+ self.prompt_template.sep
|
||||
)
|
||||
|
||||
### current conversation
|
||||
for now_message in self.current_message.messages:
|
||||
text += (
|
||||
now_message.type + ":" + now_message.content + self.prompt_template.sep
|
||||
)
|
||||
|
||||
return text
|
||||
|
||||
@property
|
||||
def chat_type(self) -> str:
|
||||
return ChatScene.ChatExecution.value
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# chat: ChatWithDb = ChatWithDb("chat123", "gpt-user", "查询用户信息")
|
||||
#
|
||||
# chat.call()
|
||||
#
|
||||
# resp = chat.chat_show()
|
||||
#
|
||||
# print(vars(resp))
|
||||
|
||||
# memory = FileHistoryMemory("test123")
|
||||
# once1 = OnceConversation()
|
||||
# once1.add_user_message("问题测试")
|
||||
# once1.add_system_message("prompt1")
|
||||
# once1.add_system_message("prompt2")
|
||||
# once1.chat_order = 1
|
||||
# once1.set_start_time(datetime.datetime.now())
|
||||
# memory.append(once1)
|
||||
#
|
||||
# once = OnceConversation()
|
||||
# once.add_user_message("问题测试2")
|
||||
# once.add_system_message("prompt3")
|
||||
# once.add_system_message("prompt4")
|
||||
# once.chat_order = 2
|
||||
# once.set_start_time(datetime.datetime.now())
|
||||
# memory.append(once)
|
||||
|
||||
db: Database = CFG.local_db
|
||||
db_connect = db.get_session("gpt-user")
|
||||
data = db.run(db_connect, "select * from users")
|
||||
print(generate_htm_table(data))
|
||||
|
||||
#
|
||||
# print(db.run(db_connect, "select * from users"))
|
||||
#
|
||||
# #
|
||||
# # def print_numbers():
|
||||
# # db_connect1 = db.get_session("dbgpt-test")
|
||||
# # cursor1 = db_connect1.execute(text("select * from test_name"))
|
||||
# # if cursor1.returns_rows:
|
||||
# # result1 = cursor1.fetchall()
|
||||
# # print( result1)
|
||||
# #
|
||||
# #
|
||||
# # # 创建线程
|
||||
# # t = threading.Thread(target=print_numbers)
|
||||
# # # 启动线程
|
||||
# # t.start()
|
||||
#
|
||||
# print(db.run(db_connect, "select * from tran_order"))
|
||||
#
|
||||
# print(db.run(db_connect, "select count(*) as aa from tran_order"))
|
||||
#
|
||||
# print(db.table_simple_info(db_connect))
|
||||
# my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
# index = 3
|
||||
# last_three_elements = my_list[-index:]
|
||||
# print(last_three_elements)
|
0
pilot/scene/chat_db/professional_qa/__init__.py
Normal file
0
pilot/scene/chat_db/professional_qa/__init__.py
Normal file
56
pilot/scene/chat_db/professional_qa/chat.py
Normal file
56
pilot/scene/chat_db/professional_qa/chat.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from pilot.scene.base_message import (
|
||||
HumanMessage,
|
||||
ViewMessage,
|
||||
)
|
||||
from pilot.scene.base_chat import BaseChat
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
from pilot.common.markdown_text import (
|
||||
generate_htm_table,
|
||||
)
|
||||
from pilot.scene.chat_db.professional_qa.prompt import prompt
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatWithDbQA(BaseChat):
|
||||
chat_scene: str = ChatScene.ChatWithDbQA.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, db_name, user_input):
|
||||
""" """
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatWithDbQA,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
self.db_name = db_name
|
||||
if db_name:
|
||||
self.database = CFG.local_db
|
||||
# 准备DB信息(拿到指定库的链接)
|
||||
self.db_connect = self.database.get_session(self.db_name)
|
||||
self.top_k: int = 5
|
||||
|
||||
def generate_input_values(self):
|
||||
|
||||
table_info = ""
|
||||
dialect = "mysql"
|
||||
if self.db_name:
|
||||
table_info = self.database.table_simple_info(self.db_connect)
|
||||
dialect = self.database.dialect
|
||||
|
||||
input_values = {
|
||||
"input": self.current_user_input,
|
||||
"top_k": str(self.top_k),
|
||||
"dialect": dialect,
|
||||
"table_info": table_info
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
if self.auto_execute:
|
||||
return self.database.run(self.db_connect, prompt_response.sql)
|
||||
else:
|
||||
return prompt_response
|
19
pilot/scene/chat_db/professional_qa/out_parser.py
Normal file
19
pilot/scene/chat_db/professional_qa/out_parser.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
class NormalChatOutputParser(BaseOutputParser):
|
||||
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
return model_out_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
48
pilot/scene/chat_db/professional_qa/prompt.py
Normal file
48
pilot/scene/chat_db/professional_qa/prompt.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import json
|
||||
import importlib
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.scene.chat_db.professional_qa.out_parser import NormalChatOutputParser
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = """A chat between a curious user and an artificial intelligence assistant, who very familiar with database related knowledge. """
|
||||
|
||||
PROMPT_SUFFIX = """Only use the following tables generate sql if have any table info:
|
||||
{table_info}
|
||||
|
||||
Question: {input}
|
||||
|
||||
"""
|
||||
|
||||
_DEFAULT_TEMPLATE = """
|
||||
You are a SQL expert. Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
|
||||
Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results.
|
||||
You can order the results by a relevant column to return the most interesting examples in the database.
|
||||
Never query for all the columns from a specific table, only ask for a the few relevant columns given the question.
|
||||
Pay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = True
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatWithDbQA.value,
|
||||
input_variables=["input", "table_info", "dialect", "top_k"],
|
||||
response_format=None,
|
||||
template_define=PROMPT_SCENE_DEFINE,
|
||||
template=_DEFAULT_TEMPLATE + PROMPT_SUFFIX ,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=NormalChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
@@ -1,24 +1,72 @@
|
||||
import requests
|
||||
import datetime
|
||||
from urllib.parse import urljoin
|
||||
from typing import List
|
||||
import traceback
|
||||
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.message import OnceConversation
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.configs.config import Config
|
||||
from pilot.commands.command import execute_command
|
||||
from pilot.prompts.generator import PluginPromptGenerator
|
||||
from pilot.scene.chat_execution.prompt import prompt
|
||||
|
||||
CFG = Config()
|
||||
|
||||
class ChatWithPlugin(BaseChat):
|
||||
chat_scene: str = ChatScene.ChatExecution.value
|
||||
plugins_prompt_generator:PluginPromptGenerator
|
||||
select_plugin: str = None
|
||||
|
||||
def __init__(self, chat_mode, chat_session_id, current_user_input):
|
||||
super().__init__(chat_mode, chat_session_id, current_user_input)
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, user_input, plugin_selector:str=None):
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatExecution,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
self.plugins_prompt_generator = PluginPromptGenerator()
|
||||
self.plugins_prompt_generator.command_registry = CFG.command_registry
|
||||
# 加载插件中可用命令
|
||||
self.select_plugin = plugin_selector
|
||||
if self.select_plugin:
|
||||
for plugin in CFG.plugins:
|
||||
if plugin._name == plugin_selector :
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
self.plugins_prompt_generator = plugin.post_prompt(self.plugins_prompt_generator)
|
||||
|
||||
def call(self):
|
||||
super().call()
|
||||
else:
|
||||
for plugin in CFG.plugins:
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
self.plugins_prompt_generator = plugin.post_prompt(self.plugins_prompt_generator)
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_input_values(self):
|
||||
input_values = {
|
||||
"input": self.current_user_input,
|
||||
"constraints": self.__list_to_prompt_str(list(self.plugins_prompt_generator.constraints)),
|
||||
"commands_infos": self.plugins_prompt_generator.generate_commands_string()
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
## plugin command run
|
||||
return execute_command(str(prompt_response.command.get('name')), prompt_response.command.get('args',{}), self.plugins_prompt_generator)
|
||||
|
||||
def chat_show(self):
|
||||
super().chat_show()
|
||||
|
||||
def _load_history(self, session_id: str) -> List[OnceConversation]:
|
||||
return super()._load_history(session_id)
|
||||
|
||||
def __list_to_prompt_str(self, list: List) -> str:
|
||||
if list:
|
||||
separator = '\n'
|
||||
return separator.join(list)
|
||||
else:
|
||||
return ""
|
||||
|
||||
def generate(self, p) -> str:
|
||||
return super().generate(p)
|
||||
|
33
pilot/scene/chat_execution/out_parser.py
Normal file
33
pilot/scene/chat_execution/out_parser.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
class PluginAction(NamedTuple):
|
||||
command: Dict
|
||||
thoughts: Dict
|
||||
|
||||
|
||||
|
||||
class PluginChatOutputParser(BaseOutputParser):
|
||||
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
response = json.loads(super().parse_prompt_response(model_out_text))
|
||||
command, thoughts = response["command"], response["thoughts"]
|
||||
return PluginAction(command, thoughts)
|
||||
|
||||
def parse_view_response(self, speak, data) -> str:
|
||||
### tool out data to table view
|
||||
print(f"parse_view_response:{speak},{str(data)}" )
|
||||
view_text = f"##### {speak}" + "\n" + str(data)
|
||||
return view_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
66
pilot/scene/chat_execution/prompt.py
Normal file
66
pilot/scene/chat_execution/prompt.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import json
|
||||
import importlib
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
from pilot.scene.chat_execution.out_parser import PluginChatOutputParser
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
PROMPT_SCENE_DEFINE = """You are an AI designed to solve the user's goals with given commands, please follow the prompts and constraints of the system's input for your answers.Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
|
||||
|
||||
PROMPT_SUFFIX = """
|
||||
Goals:
|
||||
{input}
|
||||
|
||||
"""
|
||||
|
||||
_DEFAULT_TEMPLATE = """
|
||||
Constraints:
|
||||
Exclusively use the commands listed in double quotes e.g. "command name"
|
||||
Reflect on past decisions and strategies to refine your approach.
|
||||
Constructively self-criticize your big-picture behavior constantly.
|
||||
{constraints}
|
||||
|
||||
Commands:
|
||||
{commands_infos}
|
||||
"""
|
||||
|
||||
|
||||
PROMPT_RESPONSE = """You must respond in JSON format as following format:
|
||||
{response}
|
||||
|
||||
Ensure the response is correct json and can be parsed by Python json.loads
|
||||
"""
|
||||
|
||||
RESPONSE_FORMAT = {
|
||||
"thoughts": {
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
||||
"criticism": "constructive self-criticism",
|
||||
"speak": "thoughts summary to say to user",
|
||||
},
|
||||
"command": {"name": "command name", "args": {"arg name": "value"}},
|
||||
}
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
### Whether the model service is streaming output
|
||||
PROMPT_NEED_NEED_STREAM_OUT = False
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatExecution.value,
|
||||
input_variables=["input", "constraints", "commands_infos", "response"],
|
||||
response_format=json.dumps(RESPONSE_FORMAT, indent=4),
|
||||
template_define=PROMPT_SCENE_DEFINE,
|
||||
template=PROMPT_SUFFIX + _DEFAULT_TEMPLATE + PROMPT_RESPONSE,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=PluginChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
@@ -1,8 +1,14 @@
|
||||
from pilot.scene.base_chat import BaseChat
|
||||
from pilot.singleton import Singleton
|
||||
from pilot.scene.chat_db.chat import ChatWithDb
|
||||
import inspect
|
||||
import importlib
|
||||
from pilot.scene.chat_execution.chat import ChatWithPlugin
|
||||
|
||||
from pilot.scene.chat_normal.chat import ChatNormal
|
||||
from pilot.scene.chat_db.professional_qa.chat import ChatWithDbQA
|
||||
from pilot.scene.chat_db.auto_execute.chat import ChatWithDbAutoExecute
|
||||
from pilot.scene.chat_knowledge.url.chat import ChatUrlKnowledge
|
||||
from pilot.scene.chat_knowledge.custom.chat import ChatNewKnowledge
|
||||
from pilot.scene.chat_knowledge.default.chat import ChatDefaultKnowledge
|
||||
|
||||
class ChatFactory(metaclass=Singleton):
|
||||
@staticmethod
|
||||
@@ -13,5 +19,5 @@ class ChatFactory(metaclass=Singleton):
|
||||
if cls.chat_scene == chat_mode:
|
||||
implementation = cls(**kwargs)
|
||||
if implementation == None:
|
||||
raise Exception("Invalid implementation name:" + chat_mode)
|
||||
raise Exception(f"Invalid implementation name:{chat_mode}")
|
||||
return implementation
|
||||
|
0
pilot/scene/chat_knowledge/custom/__init__.py
Normal file
0
pilot/scene/chat_knowledge/custom/__init__.py
Normal file
69
pilot/scene/chat_knowledge/custom/chat.py
Normal file
69
pilot/scene/chat_knowledge/custom/chat.py
Normal file
@@ -0,0 +1,69 @@
|
||||
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.common.markdown_text import (
|
||||
generate_markdown_table,
|
||||
generate_htm_table,
|
||||
datas_to_table_html,
|
||||
)
|
||||
|
||||
from pilot.configs.model_config import (
|
||||
DATASETS_DIR,
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
LLM_MODEL_CONFIG,
|
||||
LOGDIR,
|
||||
VECTOR_SEARCH_TOP_K,
|
||||
)
|
||||
|
||||
from pilot.scene.chat_normal.prompt import prompt
|
||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatNewKnowledge (BaseChat):
|
||||
chat_scene: str = ChatScene.ChatNewKnowledge.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, user_input, knowledge_name):
|
||||
""" """
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatNewKnowledge,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
self.knowledge_name = knowledge_name
|
||||
vector_store_config = {
|
||||
"vector_store_name": knowledge_name,
|
||||
"text_field": "content",
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
self.knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path="",
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
local_persist=False,
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
|
||||
|
||||
def generate_input_values(self):
|
||||
docs = self.knowledge_embedding_client.similar_search(self.current_user_input, VECTOR_SEARCH_TOP_K)
|
||||
docs = docs[:2000]
|
||||
input_values = {
|
||||
"context": docs,
|
||||
"question": self.current_user_input
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
return prompt_response
|
||||
|
||||
|
||||
|
||||
@property
|
||||
def chat_type(self) -> str:
|
||||
return ChatScene.ChatNewKnowledge.value
|
19
pilot/scene/chat_knowledge/custom/out_parser.py
Normal file
19
pilot/scene/chat_knowledge/custom/out_parser.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
class NormalChatOutputParser(BaseOutputParser):
|
||||
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
return model_out_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
43
pilot/scene/chat_knowledge/custom/prompt.py
Normal file
43
pilot/scene/chat_knowledge/custom/prompt.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import builtins
|
||||
import importlib
|
||||
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
from pilot.scene.chat_normal.out_parser import NormalChatOutputParser
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
_DEFAULT_TEMPLATE = """ 基于以下已知的信息, 专业、简要的回答用户的问题,
|
||||
如果无法从提供的内容中获取答案, 请说: "知识库中提供的内容不足以回答此问题" 禁止胡乱编造。
|
||||
已知内容:
|
||||
{context}
|
||||
问题:
|
||||
{question}
|
||||
"""
|
||||
|
||||
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = True
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatNewKnowledge.value,
|
||||
input_variables=["context", "question"],
|
||||
response_format=None,
|
||||
template_define=None,
|
||||
template=_DEFAULT_TEMPLATE,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=NormalChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
||||
|
0
pilot/scene/chat_knowledge/default/__init__.py
Normal file
0
pilot/scene/chat_knowledge/default/__init__.py
Normal file
66
pilot/scene/chat_knowledge/default/chat.py
Normal file
66
pilot/scene/chat_knowledge/default/chat.py
Normal file
@@ -0,0 +1,66 @@
|
||||
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.common.markdown_text import (
|
||||
generate_markdown_table,
|
||||
generate_htm_table,
|
||||
datas_to_table_html,
|
||||
)
|
||||
|
||||
from pilot.configs.model_config import (
|
||||
DATASETS_DIR,
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
LLM_MODEL_CONFIG,
|
||||
LOGDIR,
|
||||
VECTOR_SEARCH_TOP_K,
|
||||
)
|
||||
|
||||
from pilot.scene.chat_normal.prompt import prompt
|
||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatDefaultKnowledge (BaseChat):
|
||||
chat_scene: str = ChatScene.ChatKnowledge.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, user_input):
|
||||
""" """
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatKnowledge,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
vector_store_config = {
|
||||
"vector_store_name": "default",
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
self.knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path="",
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
local_persist=False,
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
|
||||
def generate_input_values(self):
|
||||
docs = self.knowledge_embedding_client.similar_search(self.current_user_input, VECTOR_SEARCH_TOP_K)
|
||||
docs = docs[:2000]
|
||||
input_values = {
|
||||
"context": docs,
|
||||
"question": self.current_user_input
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
return prompt_response
|
||||
|
||||
|
||||
|
||||
@property
|
||||
def chat_type(self) -> str:
|
||||
return ChatScene.ChatKnowledge.value
|
19
pilot/scene/chat_knowledge/default/out_parser.py
Normal file
19
pilot/scene/chat_knowledge/default/out_parser.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
class NormalChatOutputParser(BaseOutputParser):
|
||||
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
return model_out_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
43
pilot/scene/chat_knowledge/default/prompt.py
Normal file
43
pilot/scene/chat_knowledge/default/prompt.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import builtins
|
||||
import importlib
|
||||
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
from pilot.scene.chat_normal.out_parser import NormalChatOutputParser
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
_DEFAULT_TEMPLATE = """ 基于以下已知的信息, 专业、简要的回答用户的问题,
|
||||
如果无法从提供的内容中获取答案, 请说: "知识库中提供的内容不足以回答此问题" 禁止胡乱编造。
|
||||
已知内容:
|
||||
{context}
|
||||
问题:
|
||||
{question}
|
||||
"""
|
||||
|
||||
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = True
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatKnowledge.value,
|
||||
input_variables=["context", "question"],
|
||||
response_format=None,
|
||||
template_define=None,
|
||||
template=_DEFAULT_TEMPLATE,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=NormalChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
||||
|
0
pilot/scene/chat_knowledge/url/__init__.py
Normal file
0
pilot/scene/chat_knowledge/url/__init__.py
Normal file
71
pilot/scene/chat_knowledge/url/chat.py
Normal file
71
pilot/scene/chat_knowledge/url/chat.py
Normal file
@@ -0,0 +1,71 @@
|
||||
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.common.markdown_text import (
|
||||
generate_markdown_table,
|
||||
generate_htm_table,
|
||||
datas_to_table_html,
|
||||
)
|
||||
|
||||
from pilot.configs.model_config import (
|
||||
DATASETS_DIR,
|
||||
KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
LLM_MODEL_CONFIG,
|
||||
LOGDIR,
|
||||
VECTOR_SEARCH_TOP_K,
|
||||
)
|
||||
|
||||
from pilot.scene.chat_normal.prompt import prompt
|
||||
from pilot.source_embedding.knowledge_embedding import KnowledgeEmbedding
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatUrlKnowledge (BaseChat):
|
||||
chat_scene: str = ChatScene.ChatUrlKnowledge.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, user_input, url):
|
||||
""" """
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatUrlKnowledge,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
self.url = url
|
||||
vector_store_config = {
|
||||
"vector_store_name": url,
|
||||
"text_field": "content",
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
self.knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path=url,
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
local_persist=False,
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
|
||||
# url soruce in vector
|
||||
self.knowledge_embedding_client.knowledge_embedding()
|
||||
|
||||
def generate_input_values(self):
|
||||
docs = self.knowledge_embedding_client.similar_search(self.current_user_input, VECTOR_SEARCH_TOP_K)
|
||||
docs = docs[:2000]
|
||||
input_values = {
|
||||
"context": docs,
|
||||
"question": self.current_user_input
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
return prompt_response
|
||||
|
||||
|
||||
|
||||
@property
|
||||
def chat_type(self) -> str:
|
||||
return ChatScene.ChatUrlKnowledge.value
|
19
pilot/scene/chat_knowledge/url/out_parser.py
Normal file
19
pilot/scene/chat_knowledge/url/out_parser.py
Normal file
@@ -0,0 +1,19 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
class NormalChatOutputParser(BaseOutputParser):
|
||||
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
return model_out_text
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
43
pilot/scene/chat_knowledge/url/prompt.py
Normal file
43
pilot/scene/chat_knowledge/url/prompt.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import builtins
|
||||
import importlib
|
||||
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
from pilot.scene.chat_normal.out_parser import NormalChatOutputParser
|
||||
|
||||
|
||||
CFG = Config()
|
||||
|
||||
_DEFAULT_TEMPLATE = """ 基于以下已知的信息, 专业、简要的回答用户的问题,
|
||||
如果无法从提供的内容中获取答案, 请说: "知识库中提供的内容不足以回答此问题" 禁止胡乱编造。
|
||||
已知内容:
|
||||
{context}
|
||||
问题:
|
||||
{question}
|
||||
"""
|
||||
|
||||
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = True
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatUrlKnowledge.value,
|
||||
input_variables=["context", "question"],
|
||||
response_format=None,
|
||||
template_define=None,
|
||||
template=_DEFAULT_TEMPLATE,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=NormalChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
||||
|
43
pilot/scene/chat_normal/chat.py
Normal file
43
pilot/scene/chat_normal/chat.py
Normal file
@@ -0,0 +1,43 @@
|
||||
|
||||
from pilot.scene.base_chat import BaseChat, logger, headers
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.sql_database import Database
|
||||
from pilot.configs.config import Config
|
||||
|
||||
from pilot.common.markdown_text import (
|
||||
generate_markdown_table,
|
||||
generate_htm_table,
|
||||
datas_to_table_html,
|
||||
)
|
||||
from pilot.scene.chat_normal.prompt import prompt
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
class ChatNormal(BaseChat):
|
||||
chat_scene: str = ChatScene.ChatNormal.value
|
||||
|
||||
"""Number of results to return from the query"""
|
||||
|
||||
def __init__(self,temperature, max_new_tokens, chat_session_id, user_input):
|
||||
""" """
|
||||
super().__init__(temperature=temperature,
|
||||
max_new_tokens=max_new_tokens,
|
||||
chat_mode=ChatScene.ChatNormal,
|
||||
chat_session_id=chat_session_id,
|
||||
current_user_input=user_input)
|
||||
|
||||
def generate_input_values(self):
|
||||
input_values = {
|
||||
"input": self.current_user_input
|
||||
}
|
||||
return input_values
|
||||
|
||||
def do_with_prompt_response(self, prompt_response):
|
||||
return prompt_response
|
||||
|
||||
|
||||
|
||||
@property
|
||||
def chat_type(self) -> str:
|
||||
return ChatScene.ChatNormal.value
|
22
pilot/scene/chat_normal/out_parser.py
Normal file
22
pilot/scene/chat_normal/out_parser.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, NamedTuple
|
||||
import pandas as pd
|
||||
from pilot.utils import build_logger
|
||||
from pilot.out_parser.base import BaseOutputParser, T
|
||||
from pilot.configs.model_config import LOGDIR
|
||||
|
||||
|
||||
logger = build_logger("webserver", LOGDIR + "DbChatOutputParser.log")
|
||||
|
||||
class NormalChatOutputParser(BaseOutputParser):
|
||||
|
||||
def parse_prompt_response(self, model_out_text) -> T:
|
||||
return model_out_text
|
||||
|
||||
def parse_view_response(self, ai_text) -> str:
|
||||
return super().parse_view_response(ai_text)
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
pass
|
@@ -1,31 +1,33 @@
|
||||
import builtins
|
||||
import importlib
|
||||
|
||||
from pilot.prompts.prompt_new import PromptTemplate
|
||||
from pilot.configs.config import Config
|
||||
from pilot.scene.base import ChatScene
|
||||
from pilot.common.schema import SeparatorStyle
|
||||
|
||||
from pilot.scene.chat_normal.out_parser import NormalChatOutputParser
|
||||
|
||||
|
||||
def stream_write_and_read(lst):
|
||||
# 对lst使用yield from进行可迭代对象的扁平化
|
||||
yield from lst
|
||||
while True:
|
||||
val = yield
|
||||
lst.append(val)
|
||||
CFG = Config()
|
||||
|
||||
PROMPT_SEP = SeparatorStyle.SINGLE.value
|
||||
|
||||
PROMPT_NEED_NEED_STREAM_OUT = True
|
||||
|
||||
prompt = PromptTemplate(
|
||||
template_scene=ChatScene.ChatNormal.value,
|
||||
input_variables=["input"],
|
||||
response_format=None,
|
||||
template_define=None,
|
||||
template=None,
|
||||
stream_out=PROMPT_NEED_NEED_STREAM_OUT,
|
||||
output_parser=NormalChatOutputParser(
|
||||
sep=PROMPT_SEP, is_stream_out=PROMPT_NEED_NEED_STREAM_OUT
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 创建一个空列表
|
||||
my_list = []
|
||||
CFG.prompt_templates.update({prompt.template_scene: prompt})
|
||||
|
||||
# 使用生成器写入数据
|
||||
stream_writer = stream_write_and_read(my_list)
|
||||
next(stream_writer)
|
||||
stream_writer.send(10)
|
||||
print(1)
|
||||
stream_writer.send(20)
|
||||
print(2)
|
||||
stream_writer.send(30)
|
||||
print(3)
|
||||
|
||||
# 使用生成器读取数据
|
||||
stream_reader = stream_write_and_read(my_list)
|
||||
next(stream_reader)
|
||||
print(stream_reader.send(None))
|
||||
print(stream_reader.send(None))
|
||||
print(stream_reader.send(None))
|
||||
|
@@ -1,6 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import traceback
|
||||
import argparse
|
||||
import datetime
|
||||
import json
|
||||
@@ -9,7 +9,6 @@ import shutil
|
||||
import sys
|
||||
import time
|
||||
import uuid
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import gradio as gr
|
||||
import requests
|
||||
@@ -30,18 +29,19 @@ from pilot.configs.model_config import (
|
||||
LOGDIR,
|
||||
VECTOR_SEARCH_TOP_K,
|
||||
)
|
||||
from pilot.connections.mysql import MySQLOperator
|
||||
|
||||
from pilot.conversation import (
|
||||
SeparatorStyle,
|
||||
conv_qa_prompt_template,
|
||||
conv_templates,
|
||||
conversation_sql_mode,
|
||||
conversation_types,
|
||||
chat_mode_title,
|
||||
default_conversation,
|
||||
)
|
||||
from pilot.plugins import scan_plugins
|
||||
from pilot.prompts.auto_mode_prompt import AutoModePrompt
|
||||
from pilot.prompts.generator import PromptGenerator
|
||||
from pilot.common.plugins import scan_plugins
|
||||
|
||||
from pilot.prompts.generator import PluginPromptGenerator
|
||||
from pilot.server.gradio_css import code_highlight_css
|
||||
from pilot.server.gradio_patch import Chatbot as grChatbot
|
||||
from pilot.server.vectordb_qa import KnownLedgeBaseQA
|
||||
@@ -95,6 +95,11 @@ default_knowledge_base_dialogue = get_lang_text(
|
||||
add_knowledge_base_dialogue = get_lang_text(
|
||||
"knowledge_qa_type_add_knowledge_base_dialogue"
|
||||
)
|
||||
|
||||
url_knowledge_dialogue = get_lang_text(
|
||||
"knowledge_qa_type_url_knowledge_dialogue"
|
||||
)
|
||||
|
||||
knowledge_qa_type_list = [
|
||||
llm_native_dialogue,
|
||||
default_knowledge_base_dialogue,
|
||||
@@ -111,19 +116,19 @@ def get_simlar(q):
|
||||
|
||||
|
||||
def gen_sqlgen_conversation(dbname):
|
||||
mo = MySQLOperator(**DB_SETTINGS)
|
||||
|
||||
message = ""
|
||||
|
||||
schemas = mo.get_schema(dbname)
|
||||
db_connect = CFG.local_db.get_session(dbname)
|
||||
schemas = CFG.local_db.table_simple_info(db_connect)
|
||||
for s in schemas:
|
||||
message += s["schema_info"] + ";"
|
||||
message += s+ ";"
|
||||
return get_lang_text("sql_schema_info").format(dbname, message)
|
||||
|
||||
|
||||
def get_database_list():
|
||||
mo = MySQLOperator(**DB_SETTINGS)
|
||||
return mo.get_db_list()
|
||||
def plugins_select_info():
|
||||
plugins_infos: dict = {}
|
||||
for plugin in CFG.plugins:
|
||||
plugins_infos.update({f"【{plugin._name}】=>{plugin._description}": plugin._name})
|
||||
return plugins_infos
|
||||
|
||||
|
||||
get_window_url_params = """
|
||||
@@ -210,285 +215,127 @@ def post_process_code(code):
|
||||
return code
|
||||
|
||||
|
||||
def get_chat_mode(mode, sql_mode, db_selector) -> ChatScene:
|
||||
if mode == conversation_types["default_knownledge"] and not db_selector:
|
||||
return ChatScene.ChatKnowledge
|
||||
elif mode == conversation_types["custome"] and not db_selector:
|
||||
return ChatScene.ChatNewKnowledge
|
||||
elif sql_mode == conversation_sql_mode["auto_execute_ai_response"] and db_selector:
|
||||
return ChatScene.ChatWithDb
|
||||
|
||||
elif mode == conversation_types["auto_execute_plugin"] and not db_selector:
|
||||
def get_chat_mode(selected, param=None) -> ChatScene:
|
||||
if chat_mode_title['chat_use_plugin'] == selected:
|
||||
return ChatScene.ChatExecution
|
||||
elif chat_mode_title['knowledge_qa'] == selected:
|
||||
mode= param
|
||||
if mode == conversation_types["default_knownledge"]:
|
||||
return ChatScene.ChatKnowledge
|
||||
elif mode == conversation_types["custome"]:
|
||||
return ChatScene.ChatNewKnowledge
|
||||
elif mode == conversation_types["url"]:
|
||||
return ChatScene.ChatUrlKnowledge
|
||||
else:
|
||||
return ChatScene.ChatNormal
|
||||
else:
|
||||
return ChatScene.ChatNormal
|
||||
sql_mode= param
|
||||
if sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
|
||||
return ChatScene.ChatWithDbExecute
|
||||
else:
|
||||
return ChatScene.ChatWithDbQA
|
||||
|
||||
|
||||
def chatbot_callback(state, message):
|
||||
print(f"chatbot_callback:{message}")
|
||||
state.messages[-1][-1] = f"{message}"
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
|
||||
|
||||
def http_bot(
|
||||
state, mode, sql_mode, db_selector, temperature, max_new_tokens, request: gr.Request
|
||||
state, selected, temperature, max_new_tokens, plugin_selector, mode, sql_mode, db_selector, url_input, knowledge_name
|
||||
):
|
||||
logger.info(f"User message send!{state.conv_id},{sql_mode},{db_selector}")
|
||||
start_tstamp = time.time()
|
||||
scene: ChatScene = get_chat_mode(mode, sql_mode, db_selector)
|
||||
print(f"当前对话模式:{scene.value}")
|
||||
model_name = CFG.LLM_MODEL
|
||||
|
||||
if ChatScene.ChatWithDb == scene:
|
||||
logger.info("基于DB对话走新的模式!")
|
||||
logger.info(f"User message send!{state.conv_id},{selected},{plugin_selector},{mode},{sql_mode},{db_selector},{url_input}")
|
||||
if chat_mode_title['knowledge_qa'] == selected:
|
||||
scene: ChatScene = get_chat_mode(selected, mode)
|
||||
elif chat_mode_title['chat_use_plugin'] == selected:
|
||||
scene: ChatScene = get_chat_mode(selected)
|
||||
else:
|
||||
scene: ChatScene = get_chat_mode(selected, sql_mode)
|
||||
print(f"chat scene:{scene.value}")
|
||||
|
||||
if ChatScene.ChatWithDbExecute == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"db_name": db_selector,
|
||||
"user_input": state.last_user_input
|
||||
}
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
elif ChatScene.ChatWithDbQA == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"db_name": db_selector,
|
||||
"user_input": state.last_user_input,
|
||||
}
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
chat.call()
|
||||
state.messages[-1][-1] = f"{chat.current_ai_response()}"
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
|
||||
else:
|
||||
dbname = db_selector
|
||||
# TODO 这里的请求需要拼接现有知识库, 使得其根据现有知识库作答, 所以prompt需要继续优化
|
||||
if state.skip_next:
|
||||
# This generate call is skipped due to invalid inputs
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
return
|
||||
|
||||
if len(state.messages) == state.offset + 2:
|
||||
query = state.messages[-2][1]
|
||||
# 第一轮对话需要加入提示Prompt
|
||||
if sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
|
||||
# autogpt模式的第一轮对话需要 构建专属prompt
|
||||
system_prompt = auto_prompt.construct_first_prompt(
|
||||
fisrt_message=[query], db_schemes=gen_sqlgen_conversation(dbname)
|
||||
)
|
||||
logger.info("[TEST]:" + system_prompt)
|
||||
template_name = "auto_dbgpt_one_shot"
|
||||
new_state = conv_templates[template_name].copy()
|
||||
new_state.append_message(role="USER", message=system_prompt)
|
||||
# new_state.append_message(new_state.roles[0], query)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
else:
|
||||
template_name = "conv_one_shot"
|
||||
new_state = conv_templates[template_name].copy()
|
||||
# prompt 中添加上下文提示, 根据已有知识对话, 上下文提示是否也应该放在第一轮, 还是每一轮都添加上下文?
|
||||
# 如果用户侧的问题跨度很大, 应该每一轮都加提示。
|
||||
if db_selector:
|
||||
new_state.append_message(
|
||||
new_state.roles[0], gen_sqlgen_conversation(dbname) + query
|
||||
)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
else:
|
||||
new_state.append_message(new_state.roles[0], query)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
|
||||
new_state.conv_id = uuid.uuid4().hex
|
||||
state = new_state
|
||||
else:
|
||||
### 后续对话
|
||||
query = state.messages[-2][1]
|
||||
# 第一轮对话需要加入提示Prompt
|
||||
if mode == conversation_types["custome"]:
|
||||
template_name = "conv_one_shot"
|
||||
new_state = conv_templates[template_name].copy()
|
||||
# prompt 中添加上下文提示, 根据已有知识对话, 上下文提示是否也应该放在第一轮, 还是每一轮都添加上下文?
|
||||
# 如果用户侧的问题跨度很大, 应该每一轮都加提示。
|
||||
if db_selector:
|
||||
new_state.append_message(
|
||||
new_state.roles[0], gen_sqlgen_conversation(dbname) + query
|
||||
)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
else:
|
||||
new_state.append_message(new_state.roles[0], query)
|
||||
new_state.append_message(new_state.roles[1], None)
|
||||
state = new_state
|
||||
elif sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
|
||||
## 获取最后一次插件的返回
|
||||
follow_up_prompt = auto_prompt.construct_follow_up_prompt([query])
|
||||
state.messages[0][0] = ""
|
||||
state.messages[0][1] = ""
|
||||
state.messages[-2][1] = follow_up_prompt
|
||||
prompt = state.get_prompt()
|
||||
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
|
||||
if mode == conversation_types["default_knownledge"] and not db_selector:
|
||||
vector_store_config = {
|
||||
"vector_store_name": "default",
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path="",
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
local_persist=False,
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
query = state.messages[-2][1]
|
||||
docs = knowledge_embedding_client.similar_search(query, VECTOR_SEARCH_TOP_K)
|
||||
prompt = KnownLedgeBaseQA.build_knowledge_prompt(query, docs, state)
|
||||
state.messages[-2][1] = query
|
||||
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
|
||||
|
||||
if mode == conversation_types["custome"] and not db_selector:
|
||||
print("vector store name: ", vector_store_name["vs_name"])
|
||||
vector_store_config = {
|
||||
"vector_store_name": vector_store_name["vs_name"],
|
||||
"text_field": "content",
|
||||
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
|
||||
}
|
||||
knowledge_embedding_client = KnowledgeEmbedding(
|
||||
file_path="",
|
||||
model_name=LLM_MODEL_CONFIG["text2vec"],
|
||||
local_persist=False,
|
||||
vector_store_config=vector_store_config,
|
||||
)
|
||||
query = state.messages[-2][1]
|
||||
docs = knowledge_embedding_client.similar_search(query, VECTOR_SEARCH_TOP_K)
|
||||
prompt = KnownLedgeBaseQA.build_knowledge_prompt(query, docs, state)
|
||||
|
||||
state.messages[-2][1] = query
|
||||
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
|
||||
|
||||
# Make requests
|
||||
payload = {
|
||||
"model": model_name,
|
||||
"prompt": prompt,
|
||||
"temperature": float(temperature),
|
||||
"max_new_tokens": int(max_new_tokens),
|
||||
"stop": state.sep
|
||||
if state.sep_style == SeparatorStyle.SINGLE
|
||||
else state.sep2,
|
||||
elif ChatScene.ChatExecution == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"plugin_selector": plugin_selector,
|
||||
"user_input": state.last_user_input,
|
||||
}
|
||||
logger.info(f"Requert: \n{payload}")
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
elif ChatScene.ChatNormal == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"user_input": state.last_user_input,
|
||||
}
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
elif ChatScene.ChatKnowledge == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"user_input": state.last_user_input,
|
||||
}
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
elif ChatScene.ChatNewKnowledge == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"user_input": state.last_user_input,
|
||||
"knowledge_name": knowledge_name
|
||||
}
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
elif ChatScene.ChatUrlKnowledge == scene:
|
||||
chat_param = {
|
||||
"temperature": temperature,
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"chat_session_id": state.conv_id,
|
||||
"user_input": state.last_user_input,
|
||||
"url": url_input
|
||||
}
|
||||
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
|
||||
|
||||
if sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
|
||||
response = requests.post(
|
||||
urljoin(CFG.MODEL_SERVER, "generate"),
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=120,
|
||||
)
|
||||
|
||||
print(response.json())
|
||||
print(str(response))
|
||||
try:
|
||||
text = response.text.strip()
|
||||
text = text.rstrip()
|
||||
respObj = json.loads(text)
|
||||
|
||||
xx = respObj["response"]
|
||||
xx = xx.strip(b"\x00".decode())
|
||||
respObj_ex = json.loads(xx)
|
||||
if respObj_ex["error_code"] == 0:
|
||||
ai_response = None
|
||||
all_text = respObj_ex["text"]
|
||||
### 解析返回文本,获取AI回复部分
|
||||
tmpResp = all_text.split(state.sep)
|
||||
last_index = -1
|
||||
for i in range(len(tmpResp)):
|
||||
if tmpResp[i].find("ASSISTANT:") != -1:
|
||||
last_index = i
|
||||
ai_response = tmpResp[last_index]
|
||||
ai_response = ai_response.replace("ASSISTANT:", "")
|
||||
ai_response = ai_response.replace("\n", "")
|
||||
ai_response = ai_response.replace("\_", "_")
|
||||
|
||||
print(ai_response)
|
||||
if ai_response == None:
|
||||
state.messages[-1][-1] = "ASSISTANT未能正确回复,回复结果为:\n" + all_text
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
else:
|
||||
plugin_resp = execute_ai_response_json(
|
||||
auto_prompt.prompt_generator, ai_response
|
||||
)
|
||||
cfg.set_last_plugin_return(plugin_resp)
|
||||
print(plugin_resp)
|
||||
state.messages[-1][-1] = (
|
||||
"Model推理信息:\n"
|
||||
+ ai_response
|
||||
+ "\n\nDB-GPT执行结果:\n"
|
||||
+ plugin_resp
|
||||
)
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
except NotCommands as e:
|
||||
print("命令执行:" + e.message)
|
||||
state.messages[-1][-1] = (
|
||||
"命令执行:" + e.message + "\n模型输出:\n" + str(ai_response)
|
||||
)
|
||||
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
|
||||
else:
|
||||
# 流式输出
|
||||
state.messages[-1][-1] = "▌"
|
||||
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
|
||||
|
||||
try:
|
||||
# Stream output
|
||||
response = requests.post(
|
||||
urljoin(CFG.MODEL_SERVER, "generate_stream"),
|
||||
headers=headers,
|
||||
json=payload,
|
||||
stream=True,
|
||||
timeout=20,
|
||||
)
|
||||
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
|
||||
if chunk:
|
||||
data = json.loads(chunk.decode())
|
||||
|
||||
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
|
||||
"""
|
||||
if data["error_code"] == 0:
|
||||
print("****************:", data)
|
||||
if "vicuna" in CFG.LLM_MODEL:
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
else:
|
||||
output = data["text"].strip()
|
||||
|
||||
output = post_process_code(output)
|
||||
state.messages[-1][-1] = output + "▌"
|
||||
yield (state, state.to_gradio_chatbot()) + (
|
||||
disable_btn,
|
||||
) * 5
|
||||
else:
|
||||
output = (
|
||||
data["text"] + f" (error_code: {data['error_code']})"
|
||||
)
|
||||
state.messages[-1][-1] = output
|
||||
yield (state, state.to_gradio_chatbot()) + (
|
||||
disable_btn,
|
||||
disable_btn,
|
||||
disable_btn,
|
||||
enable_btn,
|
||||
enable_btn,
|
||||
)
|
||||
return
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
|
||||
yield (state, state.to_gradio_chatbot()) + (
|
||||
disable_btn,
|
||||
disable_btn,
|
||||
disable_btn,
|
||||
enable_btn,
|
||||
enable_btn,
|
||||
)
|
||||
return
|
||||
|
||||
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
||||
if not chat.prompt_template.stream_out:
|
||||
logger.info("not stream out, wait model response!")
|
||||
state.messages[-1][-1] = chat.nostream_call()
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
else:
|
||||
logger.info("stream out start!")
|
||||
try:
|
||||
stream_gen = chat.stream_call()
|
||||
for msg in stream_gen:
|
||||
state.messages[-1][-1] = msg
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
state.messages[-1][-1] = "Error:" + str(e)
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
|
||||
# 记录运行日志
|
||||
finish_tstamp = time.time()
|
||||
logger.info(f"{output}")
|
||||
|
||||
with open(get_conv_log_filename(), "a") as fout:
|
||||
data = {
|
||||
"tstamp": round(finish_tstamp, 4),
|
||||
"type": "chat",
|
||||
"model": model_name,
|
||||
"start": round(start_tstamp, 4),
|
||||
"finish": round(start_tstamp, 4),
|
||||
"state": state.dict(),
|
||||
"ip": request.client.host,
|
||||
}
|
||||
fout.write(json.dumps(data) + "\n")
|
||||
|
||||
if state.messages[-1][-1].endwith("▌"):
|
||||
state.messages[-1][-1] = state.messages[-1][-1][:-1]
|
||||
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
|
||||
|
||||
block_css = (
|
||||
code_highlight_css
|
||||
@@ -515,15 +362,12 @@ def change_sql_mode(sql_mode):
|
||||
|
||||
|
||||
def change_mode(mode):
|
||||
if mode in [default_knowledge_base_dialogue, llm_native_dialogue]:
|
||||
return gr.update(visible=False)
|
||||
else:
|
||||
if mode in [add_knowledge_base_dialogue]:
|
||||
return gr.update(visible=True)
|
||||
else:
|
||||
return gr.update(visible=False)
|
||||
|
||||
|
||||
def change_tab():
|
||||
autogpt = True
|
||||
|
||||
|
||||
def build_single_model_ui():
|
||||
notice_markdown = get_lang_text("db_gpt_introduction")
|
||||
@@ -552,7 +396,16 @@ def build_single_model_ui():
|
||||
interactive=True,
|
||||
label=get_lang_text("max_input_token_size"),
|
||||
)
|
||||
|
||||
tabs = gr.Tabs()
|
||||
|
||||
def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
|
||||
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
||||
return evt.value
|
||||
|
||||
selected = gr.Textbox(show_label=False, visible=False, placeholder="Selected")
|
||||
tabs.select(on_select, None, selected)
|
||||
|
||||
with tabs:
|
||||
tab_sql = gr.TabItem(get_lang_text("sql_generate_diagnostics"), elem_id="SQL")
|
||||
with tab_sql:
|
||||
@@ -572,11 +425,34 @@ def build_single_model_ui():
|
||||
get_lang_text("sql_generate_mode_none"),
|
||||
],
|
||||
show_label=False,
|
||||
value=get_lang_text("sql_generate_mode_none"),
|
||||
value=get_lang_text("sql_generate_mode_none")
|
||||
)
|
||||
sql_vs_setting = gr.Markdown(get_lang_text("sql_vs_setting"))
|
||||
sql_mode.change(fn=change_sql_mode, inputs=sql_mode, outputs=sql_vs_setting)
|
||||
|
||||
tab_plugin = gr.TabItem(get_lang_text("chat_use_plugin"), elem_id="PLUGIN")
|
||||
# tab_plugin.select(change_func)
|
||||
with tab_plugin:
|
||||
print("tab_plugin in...")
|
||||
with gr.Row(elem_id="plugin_selector"):
|
||||
# TODO
|
||||
plugin_selector = gr.Dropdown(
|
||||
label=get_lang_text("select_plugin"),
|
||||
choices=list(plugins_select_info().keys()),
|
||||
value="",
|
||||
interactive=True,
|
||||
show_label=True,
|
||||
type="value"
|
||||
).style(container=False)
|
||||
|
||||
def plugin_change(evt: gr.SelectData): # SelectData is a subclass of EventData
|
||||
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
||||
print(f"user plugin:{plugins_select_info().get(evt.value)}")
|
||||
return plugins_select_info().get(evt.value)
|
||||
|
||||
plugin_selected = gr.Textbox(show_label=False, visible=False, placeholder="Selected")
|
||||
plugin_selector.select(plugin_change, None, plugin_selected)
|
||||
|
||||
tab_qa = gr.TabItem(get_lang_text("knowledge_qa"), elem_id="QA")
|
||||
with tab_qa:
|
||||
mode = gr.Radio(
|
||||
@@ -584,14 +460,25 @@ def build_single_model_ui():
|
||||
llm_native_dialogue,
|
||||
default_knowledge_base_dialogue,
|
||||
add_knowledge_base_dialogue,
|
||||
url_knowledge_dialogue,
|
||||
],
|
||||
show_label=False,
|
||||
value=llm_native_dialogue,
|
||||
)
|
||||
vs_setting = gr.Accordion(
|
||||
get_lang_text("configure_knowledge_base"), open=False
|
||||
get_lang_text("configure_knowledge_base"), open=False, visible=False
|
||||
)
|
||||
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
|
||||
|
||||
url_input = gr.Textbox(label=get_lang_text("url_input_label"), lines=1, interactive=True, visible=False)
|
||||
def show_url_input(evt:gr.SelectData):
|
||||
if evt.value == url_knowledge_dialogue:
|
||||
return gr.update(visible=True)
|
||||
else:
|
||||
return gr.update(visible=False)
|
||||
mode.select(fn=show_url_input, inputs=None, outputs=url_input)
|
||||
|
||||
|
||||
with vs_setting:
|
||||
vs_name = gr.Textbox(
|
||||
label=get_lang_text("new_klg_name"), lines=1, interactive=True
|
||||
@@ -639,10 +526,14 @@ def build_single_model_ui():
|
||||
clear_btn = gr.Button(value=get_lang_text("clear_box"), interactive=False)
|
||||
|
||||
gr.Markdown(learn_more_markdown)
|
||||
|
||||
params = [plugin_selected, mode, sql_mode, db_selector, url_input, vs_name]
|
||||
|
||||
|
||||
btn_list = [regenerate_btn, clear_btn]
|
||||
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
|
||||
http_bot,
|
||||
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
|
||||
[state, selected, temperature, max_output_tokens] + params,
|
||||
[state, chatbot] + btn_list,
|
||||
)
|
||||
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
|
||||
@@ -651,7 +542,7 @@ def build_single_model_ui():
|
||||
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
|
||||
).then(
|
||||
http_bot,
|
||||
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
|
||||
[state, selected, temperature, max_output_tokens]+ params,
|
||||
[state, chatbot] + btn_list,
|
||||
)
|
||||
|
||||
@@ -659,7 +550,7 @@ def build_single_model_ui():
|
||||
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
|
||||
).then(
|
||||
http_bot,
|
||||
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
|
||||
[state, selected, temperature, max_output_tokens]+ params,
|
||||
[state, chatbot] + btn_list,
|
||||
)
|
||||
vs_add.click(
|
||||
@@ -766,8 +657,8 @@ if __name__ == "__main__":
|
||||
|
||||
# 加载插件可执行命令
|
||||
command_categories = [
|
||||
"pilot.commands.audio_text",
|
||||
"pilot.commands.image_gen",
|
||||
"pilot.commands.built_in.audio_text",
|
||||
"pilot.commands.built_in.image_gen",
|
||||
]
|
||||
# 排除禁用命令
|
||||
command_categories = [
|
||||
|
0
pilot/source_embedding/external/__init__.py
vendored
Normal file
0
pilot/source_embedding/external/__init__.py
vendored
Normal file
@@ -11,6 +11,7 @@ from pilot.source_embedding.chn_document_splitter import CHNDocumentSplitter
|
||||
from pilot.source_embedding.csv_embedding import CSVEmbedding
|
||||
from pilot.source_embedding.markdown_embedding import MarkdownEmbedding
|
||||
from pilot.source_embedding.pdf_embedding import PDFEmbedding
|
||||
from pilot.source_embedding.url_embedding import URLEmbedding
|
||||
from pilot.vector_store.connector import VectorStoreConnector
|
||||
|
||||
CFG = Config()
|
||||
@@ -61,6 +62,12 @@ class KnowledgeEmbedding:
|
||||
model_name=self.model_name,
|
||||
vector_store_config=self.vector_store_config,
|
||||
)
|
||||
elif self.file_type == "url":
|
||||
embedding = URLEmbedding(
|
||||
file_path=self.file_path,
|
||||
model_name=self.model_name,
|
||||
vector_store_config=self.vector_store_config,
|
||||
)
|
||||
|
||||
return embedding
|
||||
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from pilot.vector_store.chroma_store import ChromaStore
|
||||
from pilot.vector_store.milvus_store import MilvusStore
|
||||
# from pilot.vector_store.milvus_store import MilvusStore
|
||||
|
||||
connector = {"Chroma": ChromaStore, "Milvus": MilvusStore}
|
||||
connector = {"Chroma": ChromaStore, "Milvus": None}
|
||||
|
||||
|
||||
class VectorStoreConnector:
|
||||
|
Reference in New Issue
Block a user