Merge branch 'dev' into llm_fxp

This commit is contained in:
csunny
2023-06-01 14:39:33 +08:00
66 changed files with 1780 additions and 1336 deletions

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import traceback
import argparse
import datetime
import json
@@ -9,7 +9,6 @@ import shutil
import sys
import time
import uuid
from urllib.parse import urljoin
import gradio as gr
import requests
@@ -30,18 +29,19 @@ from pilot.configs.model_config import (
LOGDIR,
VECTOR_SEARCH_TOP_K,
)
from pilot.connections.mysql import MySQLOperator
from pilot.conversation import (
SeparatorStyle,
conv_qa_prompt_template,
conv_templates,
conversation_sql_mode,
conversation_types,
chat_mode_title,
default_conversation,
)
from pilot.plugins import scan_plugins
from pilot.prompts.auto_mode_prompt import AutoModePrompt
from pilot.prompts.generator import PromptGenerator
from pilot.common.plugins import scan_plugins
from pilot.prompts.generator import PluginPromptGenerator
from pilot.server.gradio_css import code_highlight_css
from pilot.server.gradio_patch import Chatbot as grChatbot
from pilot.server.vectordb_qa import KnownLedgeBaseQA
@@ -95,6 +95,11 @@ default_knowledge_base_dialogue = get_lang_text(
add_knowledge_base_dialogue = get_lang_text(
"knowledge_qa_type_add_knowledge_base_dialogue"
)
url_knowledge_dialogue = get_lang_text(
"knowledge_qa_type_url_knowledge_dialogue"
)
knowledge_qa_type_list = [
llm_native_dialogue,
default_knowledge_base_dialogue,
@@ -111,19 +116,19 @@ def get_simlar(q):
def gen_sqlgen_conversation(dbname):
mo = MySQLOperator(**DB_SETTINGS)
message = ""
schemas = mo.get_schema(dbname)
db_connect = CFG.local_db.get_session(dbname)
schemas = CFG.local_db.table_simple_info(db_connect)
for s in schemas:
message += s["schema_info"] + ";"
message += s+ ";"
return get_lang_text("sql_schema_info").format(dbname, message)
def get_database_list():
mo = MySQLOperator(**DB_SETTINGS)
return mo.get_db_list()
def plugins_select_info():
plugins_infos: dict = {}
for plugin in CFG.plugins:
plugins_infos.update({f"{plugin._name}】=>{plugin._description}": plugin._name})
return plugins_infos
get_window_url_params = """
@@ -210,285 +215,127 @@ def post_process_code(code):
return code
def get_chat_mode(mode, sql_mode, db_selector) -> ChatScene:
if mode == conversation_types["default_knownledge"] and not db_selector:
return ChatScene.ChatKnowledge
elif mode == conversation_types["custome"] and not db_selector:
return ChatScene.ChatNewKnowledge
elif sql_mode == conversation_sql_mode["auto_execute_ai_response"] and db_selector:
return ChatScene.ChatWithDb
elif mode == conversation_types["auto_execute_plugin"] and not db_selector:
def get_chat_mode(selected, param=None) -> ChatScene:
if chat_mode_title['chat_use_plugin'] == selected:
return ChatScene.ChatExecution
elif chat_mode_title['knowledge_qa'] == selected:
mode= param
if mode == conversation_types["default_knownledge"]:
return ChatScene.ChatKnowledge
elif mode == conversation_types["custome"]:
return ChatScene.ChatNewKnowledge
elif mode == conversation_types["url"]:
return ChatScene.ChatUrlKnowledge
else:
return ChatScene.ChatNormal
else:
return ChatScene.ChatNormal
sql_mode= param
if sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
return ChatScene.ChatWithDbExecute
else:
return ChatScene.ChatWithDbQA
def chatbot_callback(state, message):
print(f"chatbot_callback:{message}")
state.messages[-1][-1] = f"{message}"
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
def http_bot(
state, mode, sql_mode, db_selector, temperature, max_new_tokens, request: gr.Request
state, selected, temperature, max_new_tokens, plugin_selector, mode, sql_mode, db_selector, url_input, knowledge_name
):
logger.info(f"User message send!{state.conv_id},{sql_mode},{db_selector}")
start_tstamp = time.time()
scene: ChatScene = get_chat_mode(mode, sql_mode, db_selector)
print(f"当前对话模式:{scene.value}")
model_name = CFG.LLM_MODEL
if ChatScene.ChatWithDb == scene:
logger.info("基于DB对话走新的模式")
logger.info(f"User message send!{state.conv_id},{selected},{plugin_selector},{mode},{sql_mode},{db_selector},{url_input}")
if chat_mode_title['knowledge_qa'] == selected:
scene: ChatScene = get_chat_mode(selected, mode)
elif chat_mode_title['chat_use_plugin'] == selected:
scene: ChatScene = get_chat_mode(selected)
else:
scene: ChatScene = get_chat_mode(selected, sql_mode)
print(f"chat scene:{scene.value}")
if ChatScene.ChatWithDbExecute == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"db_name": db_selector,
"user_input": state.last_user_input
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
elif ChatScene.ChatWithDbQA == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"db_name": db_selector,
"user_input": state.last_user_input,
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
chat.call()
state.messages[-1][-1] = f"{chat.current_ai_response()}"
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
else:
dbname = db_selector
# TODO 这里的请求需要拼接现有知识库, 使得其根据现有知识库作答, 所以prompt需要继续优化
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
query = state.messages[-2][1]
# 第一轮对话需要加入提示Prompt
if sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
# autogpt模式的第一轮对话需要 构建专属prompt
system_prompt = auto_prompt.construct_first_prompt(
fisrt_message=[query], db_schemes=gen_sqlgen_conversation(dbname)
)
logger.info("[TEST]:" + system_prompt)
template_name = "auto_dbgpt_one_shot"
new_state = conv_templates[template_name].copy()
new_state.append_message(role="USER", message=system_prompt)
# new_state.append_message(new_state.roles[0], query)
new_state.append_message(new_state.roles[1], None)
else:
template_name = "conv_one_shot"
new_state = conv_templates[template_name].copy()
# prompt 中添加上下文提示, 根据已有知识对话, 上下文提示是否也应该放在第一轮, 还是每一轮都添加上下文?
# 如果用户侧的问题跨度很大, 应该每一轮都加提示。
if db_selector:
new_state.append_message(
new_state.roles[0], gen_sqlgen_conversation(dbname) + query
)
new_state.append_message(new_state.roles[1], None)
else:
new_state.append_message(new_state.roles[0], query)
new_state.append_message(new_state.roles[1], None)
new_state.conv_id = uuid.uuid4().hex
state = new_state
else:
### 后续对话
query = state.messages[-2][1]
# 第一轮对话需要加入提示Prompt
if mode == conversation_types["custome"]:
template_name = "conv_one_shot"
new_state = conv_templates[template_name].copy()
# prompt 中添加上下文提示, 根据已有知识对话, 上下文提示是否也应该放在第一轮, 还是每一轮都添加上下文?
# 如果用户侧的问题跨度很大, 应该每一轮都加提示。
if db_selector:
new_state.append_message(
new_state.roles[0], gen_sqlgen_conversation(dbname) + query
)
new_state.append_message(new_state.roles[1], None)
else:
new_state.append_message(new_state.roles[0], query)
new_state.append_message(new_state.roles[1], None)
state = new_state
elif sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
## 获取最后一次插件的返回
follow_up_prompt = auto_prompt.construct_follow_up_prompt([query])
state.messages[0][0] = ""
state.messages[0][1] = ""
state.messages[-2][1] = follow_up_prompt
prompt = state.get_prompt()
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["default_knownledge"] and not db_selector:
vector_store_config = {
"vector_store_name": "default",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = KnowledgeEmbedding(
file_path="",
model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config=vector_store_config,
)
query = state.messages[-2][1]
docs = knowledge_embedding_client.similar_search(query, VECTOR_SEARCH_TOP_K)
prompt = KnownLedgeBaseQA.build_knowledge_prompt(query, docs, state)
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
if mode == conversation_types["custome"] and not db_selector:
print("vector store name: ", vector_store_name["vs_name"])
vector_store_config = {
"vector_store_name": vector_store_name["vs_name"],
"text_field": "content",
"vector_store_path": KNOWLEDGE_UPLOAD_ROOT_PATH,
}
knowledge_embedding_client = KnowledgeEmbedding(
file_path="",
model_name=LLM_MODEL_CONFIG["text2vec"],
local_persist=False,
vector_store_config=vector_store_config,
)
query = state.messages[-2][1]
docs = knowledge_embedding_client.similar_search(query, VECTOR_SEARCH_TOP_K)
prompt = KnownLedgeBaseQA.build_knowledge_prompt(query, docs, state)
state.messages[-2][1] = query
skip_echo_len = len(prompt.replace("</s>", " ")) + 1
# Make requests
payload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"max_new_tokens": int(max_new_tokens),
"stop": state.sep
if state.sep_style == SeparatorStyle.SINGLE
else state.sep2,
elif ChatScene.ChatExecution == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"plugin_selector": plugin_selector,
"user_input": state.last_user_input,
}
logger.info(f"Requert: \n{payload}")
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
elif ChatScene.ChatNormal == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
elif ChatScene.ChatKnowledge == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
elif ChatScene.ChatNewKnowledge == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
"knowledge_name": knowledge_name
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
elif ChatScene.ChatUrlKnowledge == scene:
chat_param = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"chat_session_id": state.conv_id,
"user_input": state.last_user_input,
"url": url_input
}
chat: BaseChat = CHAT_FACTORY.get_implementation(scene.value, **chat_param)
if sql_mode == conversation_sql_mode["auto_execute_ai_response"]:
response = requests.post(
urljoin(CFG.MODEL_SERVER, "generate"),
headers=headers,
json=payload,
timeout=120,
)
print(response.json())
print(str(response))
try:
text = response.text.strip()
text = text.rstrip()
respObj = json.loads(text)
xx = respObj["response"]
xx = xx.strip(b"\x00".decode())
respObj_ex = json.loads(xx)
if respObj_ex["error_code"] == 0:
ai_response = None
all_text = respObj_ex["text"]
### 解析返回文本获取AI回复部分
tmpResp = all_text.split(state.sep)
last_index = -1
for i in range(len(tmpResp)):
if tmpResp[i].find("ASSISTANT:") != -1:
last_index = i
ai_response = tmpResp[last_index]
ai_response = ai_response.replace("ASSISTANT:", "")
ai_response = ai_response.replace("\n", "")
ai_response = ai_response.replace("\_", "_")
print(ai_response)
if ai_response == None:
state.messages[-1][-1] = "ASSISTANT未能正确回复回复结果为:\n" + all_text
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
else:
plugin_resp = execute_ai_response_json(
auto_prompt.prompt_generator, ai_response
)
cfg.set_last_plugin_return(plugin_resp)
print(plugin_resp)
state.messages[-1][-1] = (
"Model推理信息:\n"
+ ai_response
+ "\n\nDB-GPT执行结果:\n"
+ plugin_resp
)
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
except NotCommands as e:
print("命令执行:" + e.message)
state.messages[-1][-1] = (
"命令执行:" + e.message + "\n模型输出:\n" + str(ai_response)
)
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
else:
# 流式输出
state.messages[-1][-1] = ""
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(
urljoin(CFG.MODEL_SERVER, "generate_stream"),
headers=headers,
json=payload,
stream=True,
timeout=20,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
""" TODO Multi mode output handler, rewrite this for multi model, use adapter mode.
"""
if data["error_code"] == 0:
print("****************:", data)
if "vicuna" in CFG.LLM_MODEL:
output = data["text"][skip_echo_len:].strip()
else:
output = data["text"].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + ""
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
) * 5
else:
output = (
data["text"] + f" (error_code: {data['error_code']})"
)
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg + f" (error_code: 4)"
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
if not chat.prompt_template.stream_out:
logger.info("not stream out, wait model response!")
state.messages[-1][-1] = chat.nostream_call()
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
else:
logger.info("stream out start!")
try:
stream_gen = chat.stream_call()
for msg in stream_gen:
state.messages[-1][-1] = msg
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
except Exception as e:
print(traceback.format_exc())
state.messages[-1][-1] = "Error:" + str(e)
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
# 记录运行日志
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
if state.messages[-1][-1].endwith(""):
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
block_css = (
code_highlight_css
@@ -515,15 +362,12 @@ def change_sql_mode(sql_mode):
def change_mode(mode):
if mode in [default_knowledge_base_dialogue, llm_native_dialogue]:
return gr.update(visible=False)
else:
if mode in [add_knowledge_base_dialogue]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def change_tab():
autogpt = True
def build_single_model_ui():
notice_markdown = get_lang_text("db_gpt_introduction")
@@ -552,7 +396,16 @@ def build_single_model_ui():
interactive=True,
label=get_lang_text("max_input_token_size"),
)
tabs = gr.Tabs()
def on_select(evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
return evt.value
selected = gr.Textbox(show_label=False, visible=False, placeholder="Selected")
tabs.select(on_select, None, selected)
with tabs:
tab_sql = gr.TabItem(get_lang_text("sql_generate_diagnostics"), elem_id="SQL")
with tab_sql:
@@ -572,11 +425,34 @@ def build_single_model_ui():
get_lang_text("sql_generate_mode_none"),
],
show_label=False,
value=get_lang_text("sql_generate_mode_none"),
value=get_lang_text("sql_generate_mode_none")
)
sql_vs_setting = gr.Markdown(get_lang_text("sql_vs_setting"))
sql_mode.change(fn=change_sql_mode, inputs=sql_mode, outputs=sql_vs_setting)
tab_plugin = gr.TabItem(get_lang_text("chat_use_plugin"), elem_id="PLUGIN")
# tab_plugin.select(change_func)
with tab_plugin:
print("tab_plugin in...")
with gr.Row(elem_id="plugin_selector"):
# TODO
plugin_selector = gr.Dropdown(
label=get_lang_text("select_plugin"),
choices=list(plugins_select_info().keys()),
value="",
interactive=True,
show_label=True,
type="value"
).style(container=False)
def plugin_change(evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
print(f"user plugin:{plugins_select_info().get(evt.value)}")
return plugins_select_info().get(evt.value)
plugin_selected = gr.Textbox(show_label=False, visible=False, placeholder="Selected")
plugin_selector.select(plugin_change, None, plugin_selected)
tab_qa = gr.TabItem(get_lang_text("knowledge_qa"), elem_id="QA")
with tab_qa:
mode = gr.Radio(
@@ -584,14 +460,25 @@ def build_single_model_ui():
llm_native_dialogue,
default_knowledge_base_dialogue,
add_knowledge_base_dialogue,
url_knowledge_dialogue,
],
show_label=False,
value=llm_native_dialogue,
)
vs_setting = gr.Accordion(
get_lang_text("configure_knowledge_base"), open=False
get_lang_text("configure_knowledge_base"), open=False, visible=False
)
mode.change(fn=change_mode, inputs=mode, outputs=vs_setting)
url_input = gr.Textbox(label=get_lang_text("url_input_label"), lines=1, interactive=True, visible=False)
def show_url_input(evt:gr.SelectData):
if evt.value == url_knowledge_dialogue:
return gr.update(visible=True)
else:
return gr.update(visible=False)
mode.select(fn=show_url_input, inputs=None, outputs=url_input)
with vs_setting:
vs_name = gr.Textbox(
label=get_lang_text("new_klg_name"), lines=1, interactive=True
@@ -639,10 +526,14 @@ def build_single_model_ui():
clear_btn = gr.Button(value=get_lang_text("clear_box"), interactive=False)
gr.Markdown(learn_more_markdown)
params = [plugin_selected, mode, sql_mode, db_selector, url_input, vs_name]
btn_list = [regenerate_btn, clear_btn]
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
http_bot,
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, selected, temperature, max_output_tokens] + params,
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
@@ -651,7 +542,7 @@ def build_single_model_ui():
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, selected, temperature, max_output_tokens]+ params,
[state, chatbot] + btn_list,
)
@@ -659,7 +550,7 @@ def build_single_model_ui():
add_text, [state, textbox], [state, chatbot, textbox] + btn_list
).then(
http_bot,
[state, mode, sql_mode, db_selector, temperature, max_output_tokens],
[state, selected, temperature, max_output_tokens]+ params,
[state, chatbot] + btn_list,
)
vs_add.click(
@@ -766,8 +657,8 @@ if __name__ == "__main__":
# 加载插件可执行命令
command_categories = [
"pilot.commands.audio_text",
"pilot.commands.image_gen",
"pilot.commands.built_in.audio_text",
"pilot.commands.built_in.image_gen",
]
# 排除禁用命令
command_categories = [