refactor: The first refactored version for sdk release (#907)

Co-authored-by: chengfangyin2 <chengfangyin3@jd.com>
This commit is contained in:
FangYin Cheng
2023-12-08 14:45:59 +08:00
committed by GitHub
parent e7e4aff667
commit cd725db1fb
573 changed files with 2094 additions and 3571 deletions

272
dbgpt/app/knowledge/api.py Normal file
View File

@@ -0,0 +1,272 @@
import os
import shutil
import tempfile
import logging
from fastapi import APIRouter, File, UploadFile, Form
from dbgpt._private.config import Config
from dbgpt.configs.model_config import (
EMBEDDING_MODEL_CONFIG,
KNOWLEDGE_UPLOAD_ROOT_PATH,
)
from dbgpt.app.openapi.api_v1.api_v1 import no_stream_generator, stream_generator
from dbgpt.app.openapi.api_view_model import Result
from dbgpt.rag.embedding_engine.embedding_engine import EmbeddingEngine
from dbgpt.rag.embedding_engine.embedding_factory import EmbeddingFactory
from dbgpt.app.knowledge.service import KnowledgeService
from dbgpt.app.knowledge.request.request import (
KnowledgeQueryRequest,
KnowledgeQueryResponse,
KnowledgeDocumentRequest,
DocumentSyncRequest,
ChunkQueryRequest,
DocumentQueryRequest,
SpaceArgumentRequest,
EntityExtractRequest,
DocumentSummaryRequest,
)
from dbgpt.app.knowledge.request.request import KnowledgeSpaceRequest
from dbgpt.util.tracer import root_tracer, SpanType
logger = logging.getLogger(__name__)
CFG = Config()
router = APIRouter()
knowledge_space_service = KnowledgeService()
@router.post("/knowledge/space/add")
def space_add(request: KnowledgeSpaceRequest):
print(f"/space/add params: {request}")
try:
knowledge_space_service.create_knowledge_space(request)
return Result.succ([])
except Exception as e:
return Result.failed(code="E000X", msg=f"space add error {e}")
@router.post("/knowledge/space/list")
def space_list(request: KnowledgeSpaceRequest):
print(f"/space/list params:")
try:
return Result.succ(knowledge_space_service.get_knowledge_space(request))
except Exception as e:
return Result.failed(code="E000X", msg=f"space list error {e}")
@router.post("/knowledge/space/delete")
def space_delete(request: KnowledgeSpaceRequest):
print(f"/space/delete params:")
try:
return Result.succ(knowledge_space_service.delete_space(request.name))
except Exception as e:
return Result.failed(code="E000X", msg=f"space list error {e}")
@router.post("/knowledge/{space_name}/arguments")
def arguments(space_name: str):
print(f"/knowledge/space/arguments params:")
try:
return Result.succ(knowledge_space_service.arguments(space_name))
except Exception as e:
return Result.failed(code="E000X", msg=f"space list error {e}")
@router.post("/knowledge/{space_name}/argument/save")
def arguments_save(space_name: str, argument_request: SpaceArgumentRequest):
print(f"/knowledge/space/argument/save params:")
try:
return Result.succ(
knowledge_space_service.argument_save(space_name, argument_request)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"space list error {e}")
@router.post("/knowledge/{space_name}/document/add")
def document_add(space_name: str, request: KnowledgeDocumentRequest):
print(f"/document/add params: {space_name}, {request}")
try:
return Result.succ(
knowledge_space_service.create_knowledge_document(
space=space_name, request=request
)
)
# return Result.succ([])
except Exception as e:
return Result.failed(code="E000X", msg=f"document add error {e}")
@router.post("/knowledge/{space_name}/document/list")
def document_list(space_name: str, query_request: DocumentQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
try:
return Result.succ(
knowledge_space_service.get_knowledge_documents(space_name, query_request)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"document list error {e}")
@router.post("/knowledge/{space_name}/document/delete")
def document_delete(space_name: str, query_request: DocumentQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
try:
return Result.succ(
knowledge_space_service.delete_document(space_name, query_request.doc_name)
)
except Exception as e:
return Result.failed(code="E000X", msg=f"document list error {e}")
@router.post("/knowledge/{space_name}/document/upload")
async def document_upload(
space_name: str,
doc_name: str = Form(...),
doc_type: str = Form(...),
doc_file: UploadFile = File(...),
):
print(f"/document/upload params: {space_name}")
try:
if doc_file:
if not os.path.exists(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name)):
os.makedirs(os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name))
# We can not move temp file in windows system when we open file in context of `with`
tmp_fd, tmp_path = tempfile.mkstemp(
dir=os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name)
)
with os.fdopen(tmp_fd, "wb") as tmp:
tmp.write(await doc_file.read())
shutil.move(
tmp_path,
os.path.join(KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename),
)
request = KnowledgeDocumentRequest()
request.doc_name = doc_name
request.doc_type = doc_type
request.content = os.path.join(
KNOWLEDGE_UPLOAD_ROOT_PATH, space_name, doc_file.filename
)
space_res = knowledge_space_service.get_knowledge_space(
KnowledgeSpaceRequest(name=space_name)
)
if len(space_res) == 0:
# create default space
if "default" != space_name:
raise Exception(f"you have not create your knowledge space.")
knowledge_space_service.create_knowledge_space(
KnowledgeSpaceRequest(
name=space_name,
desc="first db-gpt rag application",
owner="dbgpt",
)
)
return Result.succ(
knowledge_space_service.create_knowledge_document(
space=space_name, request=request
)
)
return Result.failed(code="E000X", msg=f"doc_file is None")
except Exception as e:
return Result.failed(code="E000X", msg=f"document add error {e}")
@router.post("/knowledge/{space_name}/document/sync")
def document_sync(space_name: str, request: DocumentSyncRequest):
logger.info(f"Received params: {space_name}, {request}")
try:
knowledge_space_service.sync_knowledge_document(
space_name=space_name, sync_request=request
)
return Result.succ([])
except Exception as e:
return Result.failed(code="E000X", msg=f"document sync error {e}")
@router.post("/knowledge/{space_name}/chunk/list")
def document_list(space_name: str, query_request: ChunkQueryRequest):
print(f"/document/list params: {space_name}, {query_request}")
try:
return Result.succ(knowledge_space_service.get_document_chunks(query_request))
except Exception as e:
return Result.failed(code="E000X", msg=f"document chunk list error {e}")
@router.post("/knowledge/{vector_name}/query")
def similar_query(space_name: str, query_request: KnowledgeQueryRequest):
print(f"Received params: {space_name}, {query_request}")
embedding_factory = CFG.SYSTEM_APP.get_component(
"embedding_factory", EmbeddingFactory
)
client = EmbeddingEngine(
model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
vector_store_config={"vector_store_name": space_name},
embedding_factory=embedding_factory,
)
docs = client.similar_search(query_request.query, query_request.top_k)
res = [
KnowledgeQueryResponse(text=d.page_content, source=d.metadata["source"])
for d in docs
]
return {"response": res}
@router.post("/knowledge/document/summary")
async def document_summary(request: DocumentSummaryRequest):
print(f"/document/summary params: {request}")
try:
with root_tracer.start_span(
"get_chat_instance", span_type=SpanType.CHAT, metadata=request
):
chat = await knowledge_space_service.document_summary(request=request)
headers = {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Transfer-Encoding": "chunked",
}
from starlette.responses import StreamingResponse
if not chat.prompt_template.stream_out:
return StreamingResponse(
no_stream_generator(chat),
headers=headers,
media_type="text/event-stream",
)
else:
return StreamingResponse(
stream_generator(chat, False, request.model_name),
headers=headers,
media_type="text/plain",
)
except Exception as e:
return Result.failed(code="E000X", msg=f"document summary error {e}")
@router.post("/knowledge/entity/extract")
async def entity_extract(request: EntityExtractRequest):
logger.info(f"Received params: {request}")
try:
from dbgpt.app.scene import ChatScene
from dbgpt._private.chat_util import llm_chat_response_nostream
import uuid
chat_param = {
"chat_session_id": uuid.uuid1(),
"current_user_input": request.text,
"select_param": "entity",
"model_name": request.model_name,
}
res = await llm_chat_response_nostream(
ChatScene.ExtractEntity.value(), **{"chat_param": chat_param}
)
return Result.succ(res)
except Exception as e:
return Result.failed(code="E000X", msg=f"entity extract error {e}")